The agricultural sector is undergoing a revolution that requires sustainable solutions to the challenges that arise from traditional farming methods. To address these challenges, technical and sustainable support is needed to develop projects that improve crop performance. This study focuses on onion crops and the challenges presented throughout its phenological cycle. Unmanned aerial vehicles (UAVs) and digital image processing were used to monitor the crop and identify patterns such as humid areas, weed growth, vegetation deficits, and decreased harvest performance. An algorithm was developed to identify the patterns that most affected crop growth, as the average local production reported was 40.166 tons/ha. However, only 25.00 tons/ha were reached due to blight caused by constant humidity and limited sunlight. This resulted in the death of leaves and poor development of bulbs, with 50% of the production being medium-sized. Approximately 20% of the production was lost due to blight and unfavorable weather conditions.
This article presents two procedures involving a maximal hyperconnected function and a hyperconnected lower leveling to segment the brain in a magnetic resonance imaging T1 weighted using new openings on a max-tree structure. The openings are hyperconnected and are viscous transformations. The first procedure considers finding the higher hyperconnected maximum by using an increasing criterion that plays a central role during segmentation. The second procedure utilizes hyperconnected lower leveling, which acts as a marker, controlling the reconstruction process into the mask. As a result, the proposal allows an efficient segmentation of the brain to be obtained. In total, 38 magnetic resonance T1-weighted images obtained from the Internet Brain Segmentation Repository are segmented. The Jaccard and Dice indices are computed, compared, and validated with the efficiency of the Brain Extraction Tool software and other algorithms provided in the literature.
Breast cancer is one of the diseases of most profound concern, with the most prevalence worldwide, where early detections and diagnoses play the leading role against this disease achieved through imaging techniques such as mammography. Radiologists tend to have a high false positive rate for mammography diagnoses and an accuracy of around 82%. Currently, deep learning (DL) techniques have shown promising results in the early detection of breast cancer by generating computer-aided diagnosis (CAD) systems implementing convolutional neural networks (CNNs). This work focuses on applying, evaluating, and comparing the architectures: AlexNet, GoogLeNet, Resnet50, and Vgg19 to classify breast lesions after using transfer learning with fine-tuning and training the CNN with regions extracted from the MIAS and INbreast databases. We analyzed 14 classifiers, involving 4 classes as several researches have done it before, corresponding to benign and malignant microcalcifications and masses, and as our main contribution, we also added a 5th class for the normal tissue of the mammary parenchyma increasing the correct detection; in order to evaluate the architectures with a statistical analysis based on the received operational characteristics (ROC), the area under the curve (AUC), F1 Score, accuracy, precision, sensitivity, and specificity. We generate the best results with the CNN GoogLeNet trained with five classes on a balanced database with an AUC of 99.29%, F1 Score of 91.92%, the accuracy of 91.92%, precision of 92.15%, sensitivity of 91.70%, and specificity of 97.66%, concluding that GoogLeNet is optimal as a classifier in a CAD system to deal with breast cancer.
Modeling and simulation of internal variables such as temperature and relative humidity are relevant for designing future climate control systems. In this paper, a mathematical model is proposed to predict the internal variables temperature and relative humidity (RH) of a growth chamber (GCH). Both variables are incorporated in a set of first-order differential equations, considering an energy-mass balance. The results of the model are compared and assessed in terms of the coefficients of determination (R 2 ) and the root mean squared error (RMSE). The R 2 and RMSE computed were R 2 = 0.96, R 2 = 0.94, RMSE = 0.98 • C, and RMSE = 1.08 • C, respectively, for the temperature during two consecutive weeks; and R 2 = 0.83, R 2 = 0.81, RMSE = 5.45%RH, and RMSE = 5.48%RH, respectively, for the relative humidity during the same period. Thanks to the passive systems used to control internal conditions, the growth chamber gives average differences between inside and outside of +0.34 • C for temperature, and +15.7%RH for humidity without any climate control system. Operating, the GCH proposed in this paper produces 3.5 kg of wet hydroponic green forage (HGF) for each kilogram of seed (corn or barley) harvested on average. Energies 2019, 12, 4056 2 of 22techniques are analyzed to maintain the following critical variables: Temperature, humidity, lighting, and carbon dioxide concentration [1,2]. Other research projects predict the behavior of one or more variables and provide an appropriate response to keep these variables within the desired limits [3][4][5]. Most of the research on modeling and simulations has mainly been developed for greenhouses [6][7][8][9][10][11] to predict the internal environmental conditions of enclosures utilized for cultivation and plant growth. Several studies from the perspective of different environments of models have also been pursued, with the objective of knowing the behavior of the internal variables, such as temperature and relative humidity, that will serve as support to later define an adequate strategy for controlling the growth conditions within an enclosure. Although the type of crop is not defined explicitly, its influence is implicit, given its inherent condition in the models. These studies have implemented different approaches to develop these models, such as neural networks, genetic algorithms, and neuro-fuzzy models [12][13][14][15][16], where the object of study centers on natural ventilation, forced ventilation, cooling evaporators, or systems that integrate calefaction [17][18][19][20], to mention a few of them. On the other hand, there are alternative studies not developed for greenhouse environments, and proposed by some authors to model and simulate temperature and humidity [21][22][23][24][25].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.