With the total amount of worldwide data skyrocketing, the global data storage demand is predicted to grow to 1.75 × 10 14 GB by 2025. Traditional storage methods have difficulties keeping pace given that current storage media have a maximum density of 10 3 GB/mm 3 . As such, data production will far exceed the capacity of currently available storage methods. The costs of maintaining and transferring data, as well as the limited lifespans and significant data losses associated with current technologies also demand advanced solutions for information storage. Nature offers a powerful alternative through the storage of information that defines living organisms in unique orders of four bases (A, T, C, G) located in molecules called deoxyribonucleic acid (DNA). DNA molecules as information carriers have many advantages over traditional storage media. Their high storage density, potentially low maintenance cost, ease of synthesis, and chemical modification make them an ideal alternative for information storage. To this end, rapid progress has been made over the past decade by exploiting user-defined DNA materials to encode information. In this review, we discuss the most recent advances of DNA-based data storage with a major focus on the challenges that remain in this promising field, including the current intrinsic low speed in data writing and reading and the high cost per byte stored. Alternatively, data storage relying on DNA nanostructures (as opposed to DNA sequence) as well as on other combinations of nanomaterials and biomolecules are proposed with promising technological and economic advantages. In summarizing the advances that have been made and underlining the challenges that remain, we provide a roadmap for the ongoing research in this rapidly growing field, which will enable the development of technological solutions to the global demand for superior storage methodologies.
Plasmonic solid‐state nanopores with tunable hole diameters can be prepared via a photocatalytic effect resulting from the enhanced electromagnetic (EM) field inside a metallic ring on top of a dielectric nanotube. Under white light illumination, the plasmon‐enhanced EM‐field induces a site‐selective metal nucleation and growth within the ring. This approach is used to prepare Au and bimetallic Au–Ag nano‐rings and demonstrate the reduction of the initial inner diameter of the nanopore down to 4 nm. The tunability of the nanopore diameter can be used to enable optimized detection of single entities with different sizes. As a proof‐of‐concept, single object detection of double stranded DNA (dsDNA) and Au nanoparticles (AuNPs) with a diameter down to 15 nm is performed. Numerical simulations provide insights into the EM‐field distribution and confinement, showing that a field intensity enhancement of up to 104 can be achieved inside the nanopores. This localized EM‐field can be used to perform enhanced optical measurements and generate local heating, thereby modifying the properties of the nanopore. Such a flexible approach also represents a valuable tool to investigate plasmon‐driven photochemical reactions, and it can represent an important step toward the realization of new plasmonic devices.
Due to their superior properties in single-molecule detection, plasmonic and nanopore-based sensors have attracted research interest. In recent times, they have been combined in a single device, resulting in plasmonic nanopores-based sensors. These solid-state devices featured unprecedented enhancements in single-molecule and nanoparticle detection, optical spectroscopies and trapping, control of local temperature. In this context, we have investigated two kinds of nanostructures: plasmonic nanopores and plasmonic nanoantennas, both of which were fabricated on free-standing Si3N4 membranes. As regards the nanopores, we were able to prove that their plasmonic coating enhanced their conductance when illuminated at 631 nm. On the other side, antenna-shaped nanopores (i.e., nanoantennas) were fabricated via plasmonic photochemical deposition. At this regard, we demonstrated that it was possible to fabricate nanoantennas with different internal diameters by different time of plasmon-induced photochemical deposition of metal precursors at the free tip of the nanoantenna. In conclusion, we proved that it was possible to use each nanoantenna (i.e., each decreasing internal diameter) to detect the translocation of nanoparticles with correspondingly decreasing diameters or of DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.