An accurate and reliable Indoor Positioning System (IPS) applicable to most indoor scenarios has been sought for many years. The number of technologies, techniques, and approaches in general used in IPS proposals is remarkable. Such diversity, coupled with the lack of strict and verifiable evaluations, leads to difficulties for appreciating the true value of most proposals. This paper provides a meta-review that performed a comprehensive compilation of 62 survey papers in the area of indoor positioning. The paper provides the reader with an introduction to IPS and the different technologies, techniques, and some methods commonly employed. The introduction is supported by consensus found in the selected surveys and referenced using them. Thus, the meta-review allows the reader to inspect the IPS current state at a glance and serve as a guide for the reader to easily find further details on each technology used in IPS. The analyses of the meta-review contributed with insights on the abundance and academic significance of published IPS proposals using the criterion of the number of citations. Moreover, 75 works are identified as relevant works in the research topic from a selection of about 4000 works cited in the analyzed surveys.
Abstract:WiFi fingerprinting, one of the most popular methods employed in indoor positioning, currently faces two major problems: lack of robustness to short and long time signal changes and difficult reproducibility of new methods presented in the relevant literature. This paper presents a WiFi RSS (Received Signal Strength) database created to foster and ease research works that address the above-mentioned two problems. A trained professional took several consecutive fingerprints while standing at specific positions and facing specific directions. The consecutive fingerprints may enable the study of short-term signals variations. The data collection spanned over 15 months, and, for each month, one type of training datasets and five types of test datasets were collected. The measurements of a dataset type (training or test) were taken at the same positions and directions every month, in order to enable the analysis of long-term signal variations. The database is provided with supporting materials and software, which give more information about the collection environment and eases the database utilization, respectively. The WiFi measurements and the supporting materials are available at the Zenodo repository under the open-source MIT license.
Wi-Fi fingerprinting is a well-known technique used for indoor positioning. It relies on a pattern recognition method that compares the captured operational fingerprint with a set of previously collected reference samples (radio map) using a similarity function. The matching algorithms suffer from a scalability problem in large deployments with a huge density of fingerprints, where the number of reference samples in the radio map is prohibitively large. This paper presents a comprehensive comparative study of existing methods to reduce the complexity and size of the radio map used at the operational stage. Our empirical results show that most of the methods reduce the computational burden at the expense of a degraded accuracy. Among the studied methods, only k-means, affinity propagation, and the rules based on the strongest access point properly balance the positioning accuracy and computational time. In addition to the comparative results, this paper also introduces a new evaluation framework with multiple datasets, aiming at getting more general results and contributing to a better reproducibility of new proposed solutions in the future.
This paper presents the analysis and discussion of the off-site localization competition track, which took place during the Seventh International Conference on Indoor Positioning and Indoor Navigation (IPIN 2016). Five international teams proposed different strategies for smartphone-based indoor positioning using the same reference data. The competitors were provided with several smartphone-collected signal datasets, some of which were used for training (known trajectories), and others for evaluating (unknown trajectories). The competition permits a coherent evaluation method of the competitors’ estimations, where inside information to fine-tune their systems is not offered, and thus provides, in our opinion, a good starting point to introduce a fair comparison between the smartphone-based systems found in the literature. The methodology, experience, feedback from competitors and future working lines are described.
The development of indoor positioning solutions using smartphones is a growing activity with an enormous potential for everyday life and professional applications. The research activities on this topic concentrate on the development of new positioning solutions that are tested in specific environments under their own evaluation metrics. To explore the real positioning quality of smartphone-based solutions and their capabilities for seamlessly adapting to different scenarios, it is needed to find fair evaluation frameworks. The design of competitions using extensive pre-recorded datasets is a valid way to generate open data for comparing the different solutions created by research teams. In this paper, we discuss the details of the 2017 IPIN indoor localization competition, the different datasets created, the teams participating in the event, and the results they obtained. We compare these results with other competition-based approaches (Microsoft and Perf-loc) and on-line evaluation web sites. The lessons learned by organising these competitions and the benefits for the community are addressed along the paper. Our analysis paves the way for future developments on the standardization of evaluations and for creating a widely-adopted benchmark strategy for researchers and companies in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.