Synchronization properties of fully connected networks of identical oscillatory neurons are studied, assuming purely excitatory interactions. We analyze their dependence on the time course of the synaptic interaction and on the response of the neurons to small depolarizations. Two types of responses are distinguished. In the first type, neurons always respond to small depolarization by advancing the next spike. In the second type, an excitatory postsynaptic potential (EPSP) received after the refractory period delays the firing of the next spike, while an EPSP received at a later time advances the firing. For these two types of responses we derive general conditions under which excitation destabilizes in-phase synchrony. We show that excitation is generally desynchronizing for neurons with a response of type I but can be synchronizing for responses of type II when the synaptic interactions are fast. These results are illustrated on three models of neurons: the Lapicque integrate-and-fire model, the model of Connor et al., and the Hodgkin-Huxley model. The latter exhibits a type II response, at variance with the first two models, that have type I responses. We then examine the consequences of these results for large networks, focusing on the states of partial coherence that emerge. Finally, we study the Lapicque model and the model of Connor et al. at large coupling and show that excitation can be desynchronizing even beyond the weak coupling regime.
We consider a network of globally coupled phase oscillators. The interaction between any two of them is derived from a simple model of weakly coupled biological neurons and is a periodic function of the phase difference with two Fourier components. The collective dynamics of this network is studied with emphasis on the existence and the stability of clustering states. Depending on a control parameter, three typical types of dynamics can be observed at large time: a fully synchronized state of the network (one-cluster state), a totally incoherent state, and a pair of two-cluster states connected by heteroclinic orbits. This last regime is particularly sensitive to noise. Indeed, adding a small noise gives rise, in large networks, to a slow periodic oscillation between the two two-cluster states. The frequency of this oscillation is proportional to the logarithm of the noise intensity. These switching states should occur frequently in networks of globally coupled oscillators.
PACS. 87.10 -General, theoretical, and mathematical biophysics (inc. logic of biosystems, quantum biology and relevant aspects of thermodynamics, information theory, cybernetics, and bionics). PACS. 05.45 -Theory and models of chaotic systems.
It is shown that very small time steps are required to reproduce correctly the synchronization properties of large networks of integrate-and-fire neurons when the differential system describing their dynamics is integrated with the standard Euler or second-order Runge-Kutta algorithms. The reason for that behavior is analyzed, and a simple improvement of these algorithms is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.