Cell migration is a fundamental process that occurs during embryo development. Classic studies using in vitro culture systems have been instrumental in dissecting the principles of cell motility and highlighting how cells make use of topographical features of the substrate, cell-cell contacts, and chemical and physical environmental signals to direct their locomotion. Here, we review the guidance principles of in vitro cell locomotion and examine how they control directed cell migration in vivo during development. We focus on developmental examples in which individual guidance mechanisms have been clearly dissected, and for which the interactions among guidance cues have been explored. We also discuss how the migratory behaviours elicited by guidance mechanisms generate the stereotypical patterns of migration that shape tissues in the developing embryo.
The spreading of mesenchymal-like cell layers is critical for embryo morphogenesis and tissue repair, yet we know little of this process in vivo. Here we take advantage of unique developmental features of the non-conventional annual killifish embryo to study the principles underlying tissue spreading in a simple cellular environment, devoid of patterning signals and major morphogenetic cell movements. Using in vivo experimentation and physical modelling we reveal that the extra-embryonic epithelial enveloping cell layer, thought mainly to provide protection to the embryo, directs cell migration and the spreading of embryonic tissue during early development. This function relies on the ability of embryonic cells to couple their autonomous random motility to non-autonomous signals arising from the expansion of the extra-embryonic epithelium, mediated by cell membrane adhesion and tension. Thus, we present a mechanism of extra-embryonic control of embryo morphogenesis that couples the mechanical properties of adjacent tissues in the early killifish embryo.
This paper reviews the developmental role of a group of homeobox-containing genes firstly described in the early nineties as critical factors regulating eye development in Drosophila. These genes received the name of BarH due to the Drosophila "Bar" mutant phenotype and, since then, vertebrate homologues (named BarH-like or Barhl) have been described in a number of species of fish, amphibians and mammals. During embryonic development, BarH/Barhl are expressed primarily in the central nervous system where they play essential roles in decisions of cell fate, migration and survival. Transcriptional regulation mediated by these proteins involves either repression or activation mechanisms. In Drosophila, BarH is involved in morphogenesis and fate determination of the eye and external sensory organs, in regional prepatterning of the notum, and in formation and specification of distal leg segments. Vertebrate Barhl shares some functional properties with the fly counterparts, such as the ability to interact with basic helix-loop-helix (bHLH) proneural proteins, and plays crucial roles during cell type specification within the retina, acquisition of commissural neuron identity in the spinal cord, migration of cerebellar cells, and in cell survival within the neural plate, cochlea and cerebellum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.