Abstract. Agro-industrial areas are frequently affected by various sources of atmospheric pollutants that have a negative impact on public health and ecosystems. However, air quality in these areas is infrequently monitored because of their smaller population compared to large cities, especially in developing countries. The Cauca River valley (CRV) is an agro-industrial region in southwestern Colombia, where a large fraction of the area is devoted to sugarcane and livestock production. The CRV is also affected by road traffic and industrial emissions. This study aims to elucidate the chemical composition of particulate matter fine mode (PM2.5) and to identify the main pollutant sources before source attribution. A sampling campaign was carried out at a representative site in the CRV region, where daily averaged mass concentrations of PM2.5 and the concentrations of water-soluble ions, trace metals, organic and elemental carbon, and various fractions of organic compounds (carbohydrates, n alkanes, and polycyclic aromatic hydrocarbons – PAHs) were measured. The mean PM2.5 was 14.4±4.4 µg m−3, and the most abundant constituent was organic material (52.7 % ± 18.4 %), followed by sulfate (12.7 % ± 2.8 %), and elemental carbon (7.1 % ± 2.5 %), which indicates the presence of secondary aerosol formation and incomplete combustion. Levoglucosan was present in all samples, with a mean concentration of (113.8±147.2 ng m−3), revealing biomass burning as a persistent source. Mass closure using the elemental carbon (EC) tracer method explained 88.4 % on PM2.5, whereas the organic tracer method explained 70.9 % of PM2.5. We attribute this difference to the lack of information of specific organic tracers for some sources, both primary and secondary. Organic material and inorganic ions were the dominant groups of species (79 % of PM2.5). OMprim and OMsec contribute 24.2 % and 28.5 % to PM2.5. Inorganic ions as sulfate, nitrate, and ammonia constitute 19.0 %, EC 7.1 %, dust 3.5%, particle-bounded water (PBW) 5.3 %, and trace element oxides (TEOs), 0.9 % of PM2.5. The aerosol was acidic, with a pH of 2.5±0.4, mainly because of the abundance of organic and sulfur compounds. Diagnostic ratios and tracer concentrations indicate that most PM2.5 was emitted locally and had contributions of both pyrogenic and petrogenic sources, that biomass burning was ubiquitous during the sampling period and was the main source of PAHs, and that the relatively low PM2.5 concentrations and mutagenic potentials are consistent with low-intensity, year-long biomass burning (BB) and sugarcane pre-harvest burning in the CRV.
A study for the physicochemical properties was carried out in agricultural soils (n = 489) on the flat and piedmont areas of Valle del Cauca. The degradation level of different soils (n = 489) was studied by determining and analyzing their properties. Variability and distribution analysis, central tendency, dispersion and multivariate analysis were included. The results showed that the saturated hydraulic conductivity (Ks) and electrical conductivity (EC) were highly variable. The other properties were moderately variable, depending on the coefficient of variation (10% < CV < 100%). The principal component analysis indicated that the first component was related to compaction processes in the soil (34%), the second included nutrients available to plants (24%), and the third (13%) was the movement of cations. The more susceptible to degradation properties included apparent density (Da) and porosity (η), which had normal distribution (P > 0.150). 19% of the evaluated sites had possible soil compaction, with high Da values (> 1.6 g cm−3) and low η (< 40%). The degradation from salinity was minimal, and only 2.2% of the samples had EC values greater than 2 dS m−1. 50% of the soils had organic matter levels (MO) greater than 2%. 85.5% had cation exchange capacity values (CEC) that exceeded 15 cmol (+) Kg−1, and 42.12% were in the pH range from 5.5 to 7.0, optimal conditions for crops. The results showed that soil compaction occurred in some agricultural crops; however, most than 80% of the soils studied had excellent physicochemical properties (MO, CEC, pH).
Abstract. Agro-industrial areas are frequently affected by various sources of atmospheric pollutants that negatively impact public health and ecosystems. However, air quality in these areas is infrequently monitored because of their lower population density compared to large cities, especially in developing countries. The Cauca River Valley (CRV) is an agro-industrial region in Southwest Colombia, where a large fraction of the area is devoted to sugarcane and derivatives production. CRV is also affected by road traffic and industrial emissions. This study aims to elucidate the chemical composition of particulate matter fine mode (PM2.5) and to identify the main pollutant sources before source attribution. For this, a sampling campaign was carried out at a representative site of the CRV region, where daily-averaged mass concentrations of PM2.5 and the concentrations of water-soluble ions, trace metals, organic and elemental carbon, and various fractions of organic compounds (carbohydrates, n-alkanes, and polycyclic aromatic hydrocarbons – PAHs) were measured. Mean PM2.5 was 14.38 ± 4.35 ug m−3, and the most abundant constituent was organic material (52.99 % ± 17.79 %), followed by ammonium sulfate (16.12 % ± 3.98 %), and elemental carbon (6.95 % ± 2.52 %), which indicates secondary aerosol formation and incomplete combustion. Levoglucosan was present in all samples with a mean concentration of (113.8 ± 147.2 ng m−3) revealing biomass burning as a persistent source. The diagnostic ratios applied to organic compounds revealed the influence of petrogenic and pyrogenic sources. Principal component analysis identified the influence of traffic-generated road dust, secondary aerosol formation, gasoline and diesel combustion vehicle exhaust, vegetative detritus, and resuspended agriculture soil. However, no single component was dominant nor explained the CRV PM2.5 chemical species variance. Many components had equally important roles instead. Likewise, sugarcane pre-harvest burning, a frequent activity in CRV, was not identified as an independent component. This aerosol and trace gas source contributed to various components and was correlated to the formation of secondary aerosols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.