The metal matrix composites (MMCs) have been widely used where high specific properties and temperature resistance are required, particularly in aerospace applications. In this work, an ASTM-1100 aluminum alloy in the form of sheets was reinforced with multiwalled carbon nanotubes (MWCNTs) by a novel technique which we have called sandwich technique. Carbon nanotubes (CNTs) are dispersed in a polyvinyl alcohol (PVA) solution; this solution is poured into a container and dried to obtain a reinforced polymer, which is then stretched to obtain a sheet with CNTs aligned in the stretching direction. These composite sheets were stacked with aluminum sheets, and then these stacks were hot compacted in a die using an argon atmosphere to prevent the damage of the CNTs. During this process, most of the polymer evaporates and aluminum diffusion allows obtaining a consolidated matrix with a banded structure of CNTs. The mechanical properties of the composite were measured by tensile and nano-indentation tests, showing increases of up to 100% in the elastic modulus and significant increases in yield and ultimate strength with respect to unreinforced material. Field emission scanning electron microscopy (FESEM) analyses showed a good dispersion of the CNTs within the bands with no evidence of CNTs' damage. No harmful phases were found in the composite after micro X-ray diffraction (XRD) tests. The results showed that the proposed technique is promissory to solve some of the problems in the nano-MMCs manufacturing such as dispersion and alignment of the reinforcing phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.