This paper explores the network performance and costs associated with the deployment, labor, and maintenance of a long-term outdoor multi-hop wireless sensor network (WSN) located at the Audubon Society of Western Pennsylvania (ASWP), which has been in operation for more than four years for environmental data collection. The WSN performance is studied over selected time periods during the network deployment time, based on two different TinyOS-based WSN routing protocols: commercial XMesh and the open-source Collection Tree Protocol (CTP). Empirical results show that the network performance is improved with CTP (i.e., 79% packet reception rate, 96% packet success rate and 0.2% duplicate packets), versus using XMesh (i.e., 36% packet reception rate and 46%
This study presents the latest updates to the Audubon Society of Western Pennsylvania (ASWP) testbed, a $50,000 USD, 104-node outdoor multi-hop wireless sensor network (WSN). The network collects environmental data from over 240 sensors, including the EC-5, MPS-1 and MPS-2 soil moisture and soil water potential sensors and self-made sap flow sensors, across a heterogeneous deployment comprised of MICAz, IRIS and TelosB wireless motes. A low-cost sensor board and software driver was developed for communicating with the analog and digital sensors. Innovative techniques (e.g., balanced energy efficient routing and heterogeneous over-the-air mote reprogramming) maintained high success rates (>96%) and enabled effective software updating, throughout the large-scale heterogeneous WSN. The edaphic properties monitored by the network showed strong agreement with data logger measurements and were fitted to pedotransfer functions for estimating local soil hydraulic properties. Furthermore, sap flow measurements, scaled to tree stand transpiration, were found to be at or below potential evapotranspiration estimates. While outdoor WSNs still present numerous challenges, the ASWP testbed proves to be an effective and (relatively) low-cost environmental monitoring solution and represents a step towards developing a platform for monitoring and quantifying statistically relevant environmental parameters from large-scale network deployments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.