BACKGROUND Tafenoquine, a single-dose therapy for Plasmodium vivax malaria, has been associated with relapse prevention through the clearance of P. vivax parasitemia and hypnozoites, termed “radical cure.” METHODS We performed a phase 3, prospective, double-blind, double-dummy, randomized, controlled trial to compare tafenoquine with primaquine in terms of safety and efficacy. The trial was conducted at seven hospitals or clinics in Peru, Brazil, Colombia, Vietnam, and Thailand and involved patients with normal glucose-6-phosphate dehydrogenase (G6PD) enzyme activity and female patients with moderate G6PD enzyme deficiency; all patients had confirmed P. vivax parasitemia. The patients were randomly assigned, in a 2:1 ratio, to receive a single 300-mg dose of tafenoquine or 15 mg of primaquine once daily for 14 days (administered under supervision); all patients received a 3-day course of chloroquine and were followed for 180 days. The primary safety outcome was a protocol-defined decrease in the hemoglobin level (>3.0 g per deciliter or ≥30% from baseline or to a level of <6.0 g per deciliter). Freedom from recurrence of P. vivax parasitemia at 6 months was the primary efficacy outcome in a planned patient-level meta-analysis of the current trial and another phase 3 trial of tafenoquine and primaquine (per-protocol populations), and an odds ratio for recurrence of 1.45 (tafenoquine vs. primaquine) was used as a noninferiority margin. RESULTS A protocol-defined decrease in the hemoglobin level occurred in 4 of 166 patients (2.4%; 95% confidence interval [CI], 0.9 to 6.0) in the tafenoquine group and in 1 of 85 patients (1.2%; 95% CI, 0.2 to 6.4) in the primaquine group, for a between-group difference of 1.2 percentage points (95% CI, −4.2 to 5.0). In the patient-level meta-analysis, the percentage of patients who were free from recurrence at 6 months was 67.0% (95% CI, 61.0 to 72.3) among the 426 patients in the tafenoquine group and 72.8% (95% CI, 65.6 to 78.8) among the 214 patients in the primaquine group. The efficacy of tafenoquine was not shown to be noninferior to that of primaquine (odds ratio for recurrence, 1.81; 95% CI, 0.82 to 3.96). CONCLUSIONS Among patients with normal G6PD enzyme activity, the decline in hemoglobin level with tafenoquine did not differ significantly from that with primaquine. Tafenoquine showed efficacy for the radical cure of P. vivax malaria, although tafenoquine was not shown to be noninferior to primaquine. (Funded by GlaxoSmithKline and Medicines for Malaria Venture; GATHER ClinicalTrials.gov number, NCT02216123.)
Malaria elimination will be possible only with serious attempts to address asymptomatic infection and chronic infection by both Plasmodium falciparum and Plasmodium vivax. Currently available drugs that can completely clear a human of P. vivax (known as “radical cure”), and that can reduce transmission of malaria parasites, are those in the 8-aminoquinoline drug family, such as primaquine. Unfortunately, people with glucose-6-phosphate dehydrogenase (G6PD) deficiency risk having severe adverse reactions if exposed to these drugs at certain doses. G6PD deficiency is the most common human enzyme defect, affecting approximately 400 million people worldwide.Scaling up radical cure regimens will require testing for G6PD deficiency, at two levels: 1) the individual level to ensure safe case management, and 2) the population level to understand the risk in the local population to guide Plasmodium vivax treatment policy. Several technical and operational knowledge gaps must be addressed to expand access to G6PD deficiency testing and to ensure that a patient’s G6PD status is known before deciding to administer an 8-aminoquinoline-based drug.In this report from a stakeholder meeting held in Thailand on October 4 and 5, 2012, G6PD testing in support of radical cure is discussed in detail. The focus is on challenges to the development and evaluation of G6PD diagnostic tests, and on challenges related to the operational aspects of implementing G6PD testing in support of radical cure. The report also describes recommendations for evaluation of diagnostic tests for G6PD deficiency in support of radical cure.
The diagnosis and management of glucose-6-phosphate dehydrogenase (G6PD) deficiency is a crucial aspect in the current phases of malaria control and elimination, which will require the wider use of 8-aminoquinolines for both reducing Plasmodium falciparum transmission and achieving the radical cure of Plasmodium vivax. 8-aminoquinolines, such as primaquine, can induce severe haemolysis in G6PD-deficient individuals, potentially creating significant morbidity and undermining confidence in 8-aminoquinoline prescription. On the other hand, erring on the side of safety and excluding large numbers of people with unconfirmed G6PD deficiency from treatment with 8-aminoquinolines will diminish the impact of these drugs. Estimating the remaining G6PD enzyme activity is the most direct, accessible, and reliable assessment of the phenotype and remains the gold standard for the diagnosis of patients who could be harmed by the administration of primaquine. Genotyping seems an unambiguous technique, but its use is limited by cost and the large range of recognized G6PD genotypes. A number of enzyme activity assays diagnose G6PD deficiency, but they require a cold chain, specialized equipment, and laboratory skills. These assays are impractical for care delivery where most patients with malaria live. Improvements to the diagnosis of G6PD deficiency are required for the broader and safer use of 8-aminoquinolines to kill hypnozoites, while lower doses of primaquine may be safely used to kill gametocytes without testing. The discussions and conclusions of a workshop conducted in Incheon, Korea in May 2012 to review key knowledge gaps in G6PD deficiency are reported here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.