BACKGROUND Tafenoquine, a single-dose therapy for Plasmodium vivax malaria, has been associated with relapse prevention through the clearance of P. vivax parasitemia and hypnozoites, termed “radical cure.” METHODS We performed a phase 3, prospective, double-blind, double-dummy, randomized, controlled trial to compare tafenoquine with primaquine in terms of safety and efficacy. The trial was conducted at seven hospitals or clinics in Peru, Brazil, Colombia, Vietnam, and Thailand and involved patients with normal glucose-6-phosphate dehydrogenase (G6PD) enzyme activity and female patients with moderate G6PD enzyme deficiency; all patients had confirmed P. vivax parasitemia. The patients were randomly assigned, in a 2:1 ratio, to receive a single 300-mg dose of tafenoquine or 15 mg of primaquine once daily for 14 days (administered under supervision); all patients received a 3-day course of chloroquine and were followed for 180 days. The primary safety outcome was a protocol-defined decrease in the hemoglobin level (>3.0 g per deciliter or ≥30% from baseline or to a level of <6.0 g per deciliter). Freedom from recurrence of P. vivax parasitemia at 6 months was the primary efficacy outcome in a planned patient-level meta-analysis of the current trial and another phase 3 trial of tafenoquine and primaquine (per-protocol populations), and an odds ratio for recurrence of 1.45 (tafenoquine vs. primaquine) was used as a noninferiority margin. RESULTS A protocol-defined decrease in the hemoglobin level occurred in 4 of 166 patients (2.4%; 95% confidence interval [CI], 0.9 to 6.0) in the tafenoquine group and in 1 of 85 patients (1.2%; 95% CI, 0.2 to 6.4) in the primaquine group, for a between-group difference of 1.2 percentage points (95% CI, −4.2 to 5.0). In the patient-level meta-analysis, the percentage of patients who were free from recurrence at 6 months was 67.0% (95% CI, 61.0 to 72.3) among the 426 patients in the tafenoquine group and 72.8% (95% CI, 65.6 to 78.8) among the 214 patients in the primaquine group. The efficacy of tafenoquine was not shown to be noninferior to that of primaquine (odds ratio for recurrence, 1.81; 95% CI, 0.82 to 3.96). CONCLUSIONS Among patients with normal G6PD enzyme activity, the decline in hemoglobin level with tafenoquine did not differ significantly from that with primaquine. Tafenoquine showed efficacy for the radical cure of P. vivax malaria, although tafenoquine was not shown to be noninferior to primaquine. (Funded by GlaxoSmithKline and Medicines for Malaria Venture; GATHER ClinicalTrials.gov number, NCT02216123.)
Malaria elimination will be possible only with serious attempts to address asymptomatic infection and chronic infection by both Plasmodium falciparum and Plasmodium vivax. Currently available drugs that can completely clear a human of P. vivax (known as “radical cure”), and that can reduce transmission of malaria parasites, are those in the 8-aminoquinoline drug family, such as primaquine. Unfortunately, people with glucose-6-phosphate dehydrogenase (G6PD) deficiency risk having severe adverse reactions if exposed to these drugs at certain doses. G6PD deficiency is the most common human enzyme defect, affecting approximately 400 million people worldwide.Scaling up radical cure regimens will require testing for G6PD deficiency, at two levels: 1) the individual level to ensure safe case management, and 2) the population level to understand the risk in the local population to guide Plasmodium vivax treatment policy. Several technical and operational knowledge gaps must be addressed to expand access to G6PD deficiency testing and to ensure that a patient’s G6PD status is known before deciding to administer an 8-aminoquinoline-based drug.In this report from a stakeholder meeting held in Thailand on October 4 and 5, 2012, G6PD testing in support of radical cure is discussed in detail. The focus is on challenges to the development and evaluation of G6PD diagnostic tests, and on challenges related to the operational aspects of implementing G6PD testing in support of radical cure. The report also describes recommendations for evaluation of diagnostic tests for G6PD deficiency in support of radical cure.
SummaryBackgroundChloroquine remains the mainstay of treatment for Plasmodium vivax malaria despite increasing reports of treatment failure. We did a systematic review and meta-analysis to investigate the effect of chloroquine dose and the addition of primaquine on the risk of recurrent vivax malaria across different settings.MethodsA systematic review done in MEDLINE, Web of Science, Embase, and Cochrane Database of Systematic Reviews identified P vivax clinical trials published between Jan 1, 2000, and March 22, 2017. Principal investigators were invited to share individual patient data, which were pooled using standardised methods. Cox regression analyses with random effects for study site were used to investigate the roles of chloroquine dose and primaquine use on rate of recurrence between day 7 and day 42 (primary outcome). The review protocol is registered in PROSPERO, number CRD42016053310.FindingsOf 134 identified chloroquine studies, 37 studies (from 17 countries) and 5240 patients were included. 2990 patients were treated with chloroquine alone, of whom 1041 (34·8%) received a dose below the target 25 mg/kg. The risk of recurrence was 32·4% (95% CI 29·8–35·1) by day 42. After controlling for confounders, a 5 mg/kg higher chloroquine dose reduced the rate of recurrence overall (adjusted hazard ratio [AHR] 0·82, 95% CI 0·69–0·97; p=0·021) and in children younger than 5 years (0·59, 0·41–0·86; p=0·0058). Adding primaquine reduced the risk of recurrence to 4·9% (95% CI 3·1–7·7) by day 42, which is lower than with chloroquine alone (AHR 0·10, 0·05–0·17; p<0·0001).InterpretationChloroquine is commonly under-dosed in the treatment of vivax malaria. Increasing the recommended dose to 30 mg/kg in children younger than 5 years could reduce substantially the risk of early recurrence when primaquine is not given. Radical cure with primaquine was highly effective in preventing early recurrence and may also improve blood schizontocidal efficacy against chloroquine-resistant P vivax.FundingWellcome Trust, Australian National Health and Medical Research Council, and Bill & Melinda Gates Foundation.
BackgroundMalaria and dengue are the most prevalent vector-borne diseases worldwide and represent major public health problems. Both are endemic in tropical regions, propitiating co-infection. Only few co-infection cases have been reported around the world, with insufficient data so far to enhance the understanding of the effects of co-infection in the clinical presentation and severity.Methodology/Principal FindingsA cross-sectional study was conducted (2009 to 2011) in hospitalized patients with acute febrile syndrome in the Brazilian Amazon. All patients were submitted to thick blood smear and PCR for Plasmodium sp. detection, ELISA, PCR and NS1 tests for dengue, viral hepatitis, HIV and leptospirosis. In total, 1,578 patients were recruited. Among them, 176 (11.1%) presented P. vivax malaria mono-infection, 584 (37%) dengue fever mono-infection, and 44 (2.8%) were co-infected. Co-infected patients had a higher chance of presenting severe disease (vs. dengue mono-infected), deep bleeding (vs. P. vivax mono-infected), hepatomegaly, and jaundice (vs. dengue mono-infected).Conclusions/SignificanceIn endemic areas for dengue and malaria, jaundice (in dengue patients) and spontaneous bleeding (in malaria patients) should raise the suspicion of co-infection. Besides, whenever co-infection is confirmed, we recommend careful monitoring for bleeding and hepatic complications, which may result in a higher chance of severity, despite of the fact that no increased fatality rate was seen in this group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.