Commercial fisheries have dramatically impacted elasmobranch populations worldwide. With high capture and bycatch rates, the abundance of many species is rapidly declining and around a quarter of the world’s sharks and rays are threatened with extinction. At a regional scale this negative trend has also been evidenced in the central Mediterranean Sea, where bottom-trawl fisheries have affected the biomass of certain rays (e.g. Raja clavata) and sharks (e.g. Mustelus spp.). Detailed knowledge of elasmobranch habitat requirements is essential for biodiversity conservation and fisheries management, but this is often hampered by a poor understanding of their spatial ecology. Habitat suitability models were used to investigate the habitat preference of nine elasmobranch species and their overall diversity (number of species) in relation to five environmental predictors (i.e. depth, sea surface temperature, surface salinity, slope and rugosity) in the central Mediterranean Sea. Results showed that depth, seafloor morphology and sea surface temperature were the main drivers for elasmobranch habitat suitability. Predictive distribution maps revealed different species-specific patterns of suitable habitat while high assemblage diversity was predicted in deeper offshore waters (400–800 m depth). This study helps to identify priority conservation areas and diversity hot-spots for rare and endangered elasmobranchs in the Mediterranean Sea.
The present study provides updated information on the occurrence, abundance and biomass distribution patterns and length frequencies of Merluccius merluccius in the Mediterranean Sea, by analysing a time series of data from the Mediterranean International Trawl Surveys (MEDITS) from 1994 to 2015. The highest values of abundance and biomass were observed in the Sardinian Seas. The use of a generalized additive model, in which standardized biomass indices (kg km–2) were analysed as a function of environmental variables, explained how ecological factors could affect the spatio-temporal distribution of European hake biomass in the basin. High biomass levels predicted by the model were observed especially at 200 m depth and between 14°C and 18°C, highlighting the preference of the species for colder waters. A strong reduction of biomass was observed since the year 2009, probably due to the strengthening of the seasonal thermocline that had greatly reduced the availability of food. The general decrease in biomass of several stocks of anchovy and sardine, preys of European hake, might be indirectly connected to the decreasing biomass detected in the present study. The length analysis shows median values lower than 200 mm total length of most of the investigated areas.
Connectivity between spawning and nursery areas plays a major role in determining the spatial structure of fish populations and the boundaries of stock units. Here, the potential effects of surface current on a red mullet population in the Central Mediterranean were simulated using a physical oceanographic model. Red mullet larvae were represented as Lagrangian drifters released in known spawning areas of the Strait of Sicily (SoS), which represents one of the most productive demersal fishing‐grounds of the Mediterranean. To consider the effect of inter‐annual variability of oceanographic patterns, numerical simulations were performed for the spawning seasons from 1999 to 2012. The main goal was to explore connectivity between population subunits, in terms of spawning and nursery areas, inhabiting the northern (Sicilian‐Maltese) and southern (African) continental shelves of the SoS. The numerical simulations revealed a certain degree of connectivity between the Sicilian–Maltese and the African sides of the SoS. Connectivity is present in both directions, but it is stronger from the Sicilian–Maltese spawning areas to the African nurseries owing to the marine circulation features of the region. However, because the majority of the larvae are transported to areas unsuitable for settlement or outside the SoS, the dispersal process is characterized by a strong loss of potential settlers born in the spawning areas. These results are in agreement with the low genetic heterogeneity reported for this species in the Mediterranean Sea and support the existence of a metapopulation structure of red mullet in the SoS and the adjacent areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.