f For Mycobacterium tuberculosis, phenotypic methods for drug susceptibility testing of second-line drugs are poorly standardized and technically challenging. The Sensititre MYCOTB MIC plate (MYCOTB) is a microtiter plate containing lyophilized antibiotics and configured for determination of MICs to first-and second-line antituberculosis drugs. To evaluate the performance of MYCOTB for M. tuberculosis drug susceptibility testing using the Middlebrook 7H10 agar proportion method (APM) as the comparator, we conducted a two-site study using archived M. tuberculosis isolates from Uganda and the Republic of Korea. Thawed isolates were subcultured, and dilutions were inoculated into MYCOTB wells and onto 7H10 agar. MYCOTB results were read at days 7, 10, 14, and 21; APM results were read at 21 days. A total of 222 isolates provided results on both platforms. By APM, 106/222 (47.7%) of isolates were resistant to at least isoniazid and rifampin. Agreement between MYCOTB and APM with respect to susceptibility or resistance was >92% for 7 of 12 drugs when a strict definition was used and >96% for 10 of 12 drugs when agreement was defined by allowing a ؎ one-well range of dilutions around the APM critical concentration. For ethambutol, agreement was 80% to 81%. For moxifloxacin, agreement was 83% to 85%; incorporating existing DNA sequencing information for discrepant analysis raised agreement to 91% to 96%. For MYCOTB, the median time to plate interpretation was 10 days and interreader agreement was >95% for all drugs. MYCOTB provided reliable results for M. tuberculosis susceptibility testing of first-and second-line drugs except ethambutol, and results were available sooner than those determined by APM.T he emergence and spread of drug-resistant strains of Mycobacterium tuberculosis comprise a serious threat to tuberculosis (TB) control (1, 2). Knowledge of M. tuberculosis drug susceptibility is important in optimizing individual patient management and TB control in populations. Genotypic methods have the potential for a very short time to results, but to date, the knowledge of the full spectrum of genetic loci and mutations associated with resistance to many antituberculosis drugs is incomplete (3,4,5,6,7). Phenotypic methods therefore remain important. The reference phenotypic method-the indirect agar proportion method (APM) using Middlebrook solid media-is qualitative and based on drug critical concentrations. Limitations of the APM and related methods include lack of standardization and in some cases the need for in-laboratory preparation of drug stocks and agar plates, which can be a source of variability over time and between laboratories. Critical concentrations are based on historical epidemiological data and for some drugs are not well-aligned with achievable drug serum concentrations or accurate in predicting clinical failure (8,9,10). Studies on molecular drug resistance mechanisms in M. tuberculosis have shown that, at least for some antibiotics, different mutations are associated with different MICs, furthe...
The World Health Organization (WHO) recommends collection of two sputum samples for tuberculosis (TB) diagnosis, with at least one being an early morning (EM) using smear microscopy. It remains unclear whether this is necessary even when sputum culture is employed. Here, we determined the diagnostic yield from spot and the incremental yield from the EM sputum sample cultures among TB-suspected adolescents from rural Uganda. Sputum samples (both spot and early-morning) from 1862 adolescents were cultured by the Lowenstein-Jensen (LJ) and Mycobacterium Growth Indicator Tube (MGIT) methods. For spot samples, the diagnostic yields for TB were 19.0% and 57.1% with LJ and MGIT, respectively, whereas the incremental yields (not totals) of the early-morning sample were 9.5% and 42.9% (P < 0.001) with LJ and MGIT, respectively. Among TB-suspected adolescents in rural Uganda, the EM sputum culture has a high incremental diagnostic yield. Therefore, EM sputum in addition to spot sample culture is necessary for improved TB case detection.
IntroductionAlthough Sensititre Mycobacterium tuberculosis (MYCOTB) plate offers both drug susceptibility testing (DST) and minimum inhibitory concentration (MIC) results, it has not been evaluated against both Lowenstein Jensen (LJ) and Middlebrook 7H10 (MB7H10) DST methods at standard critical concentrations.Materials and methodsWe analyzed 76 M. tuberculosis isolates consisting of 54 isolates from the Uganda National TB drug resistance survey done December 2009–February 2011 and 22 isolates from the World Health Organization External Quality Assessment panel for the year 2011. All isolates were tested for LJ, MB7H10 and MYCOTB plate based DSTs for streptomycin, isoniazid, rifampicin and ethambutol anti-tuberculosis drugs. The agreement of MB7H10 with LJ and accuracy of MYCOTB plate using either LJ-DST or MB7H10 as a reference standard were determined.ResultsThe agreement (kappa) of MB7H10 with LJ was; 0.687 for rifampicin, 0.498 for isoniazid, 0.275 for streptomycin and 0.082 for ethambutol which as almost similar when compared with MYCOTB plate. The sensitivity (95% confidence interval; CI) of MYCOTB plate when LJ was used as a reference standard was higher for streptomycin 87.5% (81.6–98.4) followed by isoniazid 75.9% (65.1–95.6) and rifampicin 73.1% (52.2–88.4). When MB7H10 was used as reference standard, the sensitivity of MYCOTB plate improved significantly; isoniazid 96.2% (80.3–99.9), rifampicin 94.0 (83.4–98.7) and 93.8% (69.7–99.8). There was good agreement between MYCOTB plate and MB7H10; 1.00 for ethambutol, 0.959 for streptomycin, 0.915 for rifampicin and 0.778 for isoniazid.ConclusionsThe performance of the two culture-based reference standards for phenotypic first-line drug susceptibility testing methods, LJ and MB7H10, varied much even with acceptable MYCOTB plate MICs. There was acceptable agreement and accuracy of MYCOTB plate for drug susceptibility testing when MB7H10 was used as reference standard than with LJ-DST. Results from MIC information makes the MYCOTB plate more suitable for guiding clinicians on the choice of the most appropriate TB treatment regimen as well as limits of detection for TB drug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.