Abstract. Although forest management is one of the instruments proposed to mitigate climate change, the relationship between forest management and canopy albedo has been ignored so far by climate models. Here we develop an approach that could be implemented in Earth system models. A stand-level forest gap model is combined with a canopy radiation transfer model and satellite-derived model parameters to quantify the effects of forest thinning on summertime canopy albedo. This approach reveals which parameter has the largest affect on summer canopy albedo: we examined the effects of three forest species (pine, beech, oak) and four thinning strategies with a constant forest floor albedo (light to intense thinning regimes) and five different solar zenith angles at five different sites (40During stand establishment, summertime canopy albedo is driven by tree species. In the later stages of stand development, the effect of tree species on summertime canopy albedo decreases in favour of an increasing influence of forest thinning. These trends continue until the end of the rotation, where thinning explains up to 50 % of the variance in near-infrared albedo and up to 70 % of the variance in visible canopy albedo.The absolute summertime canopy albedo of all species ranges from 0.03 to 0.06 (visible) and 0.20 to 0.28 (nearinfrared); thus the albedo needs to be parameterised at species level. In addition, Earth system models need to account for forest management in such a way that structural changes in the canopy are described by changes in leaf area index and crown volume (maximum change of 0.02 visible and 0.05 near-infrared albedo) and that the expression of albedo depends on the solar zenith angle (maximum change of 0.02 visible and 0.05 near-infrared albedo). Earth system models taking into account these parameters would not only be able to examine the spatial effects of forest management but also the total effects of forest management on climate.
Abstract. Combining numerical models, which simulate water and energy fluxes in the subsurface-land surface-atmosphere system in a physically consistent way, becomes increasingly important to understand and study fluxes at compartmental boundaries and interdependencies of states across these boundaries. Complete state evolutions generated by such models, when run at highest possible resolutions while incorporating as many processes as attainable, may be regarded as a proxy of the real world – a virtual reality – which can be used to test hypotheses on functioning of the coupled terrestrial system and may serve as source for virtual measurements to develop data-assimilation methods. Such simulation systems, however, face severe problems caused by the vastly different scales of the processes acting in the compartments of the terrestrial system. The present study is motivated by the development of cross-compartmental data-assimilation methods, which face the difficulty of data scarcity in the subsurface when applied to real data. With appropriate and realistic measurement operators, the virtual reality not only allows taking virtual observations in any part of the terrestrial system at any density, thus overcoming data-scarcity problems of real-world applications, but also provides full information about true states and parameters aimed to be reconstructed from the measurements by data assimilation. In the present study, we have used the Terrestrial Systems Modeling Platform TerrSysMP, which couples the meteorological model COSMO, the land-surface model CLM, and the subsurface model ParFlow, to set up the virtual reality for a regional terrestrial system roughly oriented at the Neckar catchment in southwest Germany. We find that the virtual reality is in many aspects quite close to real observations of the catchment concerning, e.g., atmospheric boundary-layer height, precipitation, and runoff. But also discrepancies become apparent both in the ability of such models to correctly simulate some processes – which still need improvement – and the realism of the results of some observation operators like the SMOS and SMAP sensors, when faced with model states. In a succeeding step, we will use the virtual reality to generate observations in all compartments of the system for coupled data assimilation. The data assimilation will rely on a coarsened and simplified version of the model system.
and Steele-Dunne S ( ) Perspective on satellite-based land data assimilation to estimate water cycle components in an era of advanced data availability and model sophistication. Front. Water : . doi: .
Abstract. Coupled numerical models, which simulate water and energy fluxes in the subsurface–land-surface–atmosphere system in a physically consistent way, are a prerequisite for the analysis and a better understanding of heat and matter exchange fluxes at compartmental boundaries and interdependencies of states across these boundaries. Complete state evolutions generated by such models may be regarded as a proxy of the real world, provided they are run at sufficiently high resolution and incorporate the most important processes. Such a simulated reality can be used to test hypotheses on the functioning of the coupled terrestrial system. Coupled simulation systems, however, face severe problems caused by the vastly different scales of the processes acting in and between the compartments of the terrestrial system, which also hinders comprehensive tests of their realism. We used the Terrestrial Systems Modeling Platform (TerrSysMP), which couples the meteorological Consortium for Small-scale Modeling (COSMO) model, the land-surface Community Land Model (CLM), and the subsurface ParFlow model, to generate a simulated catchment for a regional terrestrial system mimicking the Neckar catchment in southwest Germany, the virtual Neckar catchment. Simulations for this catchment are made for the period 2007–2015 and at a spatial resolution of 400 m for the land surface and subsurface and 1.1 km for the atmosphere. Among a discussion of modeling challenges, the model performance is evaluated based on observations covering several variables of the water cycle. We find that the simulated catchment behaves in many aspects quite close to observations of the real Neckar catchment, e.g., concerning atmospheric boundary-layer height, precipitation, and runoff. But also discrepancies become apparent, both in the ability of the model to correctly simulate some processes which still need improvement, such as overland flow, and in the realism of some observation operators like the satellite-based soil moisture sensors. The whole raw dataset is available for interested users. The dataset described here is available via the CERA database (Schalge et al., 2020): https://doi.org/10.26050/WDCC/Neckar_VCS_v1.
Current data assimilation methods still face problems in strongly nonlinear cases. A promising solution is a particle filter, which provides a representation of the state probability density function (pdf) by a discrete set of particles. To allow a particle filter to work in high-dimensional systems, the proposal density freedom is explored.We used a proposal density from synchronization theory, in which one tries to synchronize the model with the true evolution of a system using one-way coupling, via the observations. This is done by adding an extra term to the model equations which will control the growth of instabilities transversal to the synchronization manifold. In this paper, an efficient ensemble-based synchronization scheme is used as a proposal density in the implicit equal-weights particle filter, a particle filter that avoids filter degeneracy by construction. Tests using the Lorenz96 model for a 1,000-dimensional system show successful results, where particles efficiently follow the truth, both for observed and unobserved variables. These first tests show that the new method is comparable to, and slightly outperforms, a well-tuned Local Ensemble Transform Kalman Filter. This methodology is a promising solution for high-dimensional nonlinear problems in the geosciences, such as numerical weather prediction. K E Y W O R D Sdata assimilation, ensemble, synchronization, nonlinear, particle filter 1 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. APPENDIXThis appendix contains the pseudocode algorithms to run the IEWPF using the ensemble-based synchronization as a proposal, as described in Section 2.3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.