Abstract. Four strains of the coccolithophore E. huxleyi (RCC1212, RCC1216, RCC1238, RCC1256) were grown in dilute batch culture at four CO 2 levels ranging from ∼200 µatm to ∼1200 µatm. Growth rate, particulate organic carbon content, and particulate inorganic carbon content were measured, and organic and inorganic carbon production calculated. The four strains did not show a uniform response to carbonate chemistry changes in any of the analysed parameters and none of the four strains displayed a response pattern previously described for this species. We conclude that the sensitivity of different strains of E. huxleyi to acidification differs substantially and that this likely has a genetic basis. We propose that this can explain apparently contradictory results reported in the literature.
[1] We report on the discovery of the mineral ikaite (CaCO 3 Á6H 2 O) in sea-ice from the Southern Ocean. The precipitation of CaCO 3 during the freezing of seawater has previously been predicted from thermodynamic modelling, indirect measurements, and has been documented in artificial sea ice during laboratory experiments but has not been reported for natural sea-ice. It is assumed that CaCO 3 formation in sea ice may be important for a sea ice-driven carbon pump in ice-covered oceanic waters. Without direct evidence of CaCO 3 precipitation in sea ice, its role in this and other processes has remained speculative. The discovery of CaCO 3 Á6H 2 O crystals in natural sea ice provides the necessary evidence for the evaluation of previous assumptions and lays the foundation for further studies to help elucidate the role of ikaite in the carbon cycle of the seasonally sea icecovered regions.
Seeded calcite growth experiments were conducted at fixed pH (10.2) and two degrees of supersaturation (X = 5, 16), while varying the Ca 2+ to CO 3 2À solution ratio over several orders of magnitude. The calcite growth rate and the incorporation of Sr in the growing crystals strongly depended on the solution stoichiometry. At a constant degree of supersaturation, the growth rate was highest when the solution concentration ratio, r = [Ca 2+ ]/[CO 3 2À ], equaled one, and decreased symmetrically with increasing or decreasing values of r. This behavior is consistent with the kink growth rate theory for non-Kossel crystals, assuming that the frequency factors for attachment to kink sites are the same for the cation and anion. Measured Sr partition coefficients, D Sr , ranged from 0.02 to 0.12, and correlated positively with the calcite growth rate.
Until recently the influence of solution stoichiometry on calcite crystal growth kinetics has attracted little attention, despite the fact that in most aqueous environments calcite precipitates from non-stoichiometric solution. In order to account for the dependence of the calcite crystal growth rate on the cation to anion ratio in solution, we extend the growth model for binary symmetrical electrolyte crystals of Zhang and Nancollas (1998) by combining it with the surface complexation model for the chemical structure of the calcite-aqueous solution interface of Wolthers et al. (2008). To maintain crystal stoichiometry, the rate of attachment of calcium ions to step edges is assumed to equal the rate of attachment of carbonate plus bicarbonate ions. The model parameters are optimized by fitting the model to the step velocities obtained previously by atomic force microscopy (AFM, Teng et al., 2000;Stack and Grantham, 2010). A variable surface roughness factor is introduced in order to reconcile the new process-based growth model with bulk precipitation rates measured in seeded calcite growth experiments. For practical applications, we further present empirical parabolic rate equations fitted to bulk growth rates of calcite in common background electrolytes and in artificial seawater-type solutions. Both the process-based and empirical growth rate equations agree with measured calcite growth rates over broad ranges of ionic strength, pH, solution stoichiometry and degree of supersaturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.