In 1997-98, fires associated with an exceptional drought caused by the El Niño/Southern Oscillation (ENSO) devastated large areas of tropical rain forests worldwide. Evidence suggests that in tropical rainforest environments selective logging may lead to an increased susceptibility of forests to fire. We investigated whether this was true in the Indonesian fires, the largest fire disaster ever observed. We performed a multiscale analysis using coarse- and high-resolution optical and radar satellite imagery assisted by ground and aerial surveys to assess the extent of the fire-damaged area and the effect on vegetation in East Kalimantan on the island of Borneo. A total of 5.2 +/- 0.3 million hectares including 2.6 million hectares of forest was burned with varying degrees of damage. Forest fires primarily affected recently logged forests; primary forests or those logged long ago were less affected. These results support the hypothesis of positive feedback between logging and fire occurrence. The fires severely damaged the remaining forests and significantly increased the risk of recurrent fire disasters by leaving huge amounts of dead flammable wood.
Savannas cover 60% of the land surface in Southern Africa, with fires and herbivory playing a key role in their ecology. The Limpopo National Park (LNP) is a 10,000 km 2 conservation area in southern Mozambique and key to protecting savannas in the region. Fire is an important factor in LNP's landscapes, but little is known about its role in the park's ecology. In this study, we explored the interaction between fire frequency (FF), landscape type, and vegetation. To assess the FF, we analyzed ten years of the Moderate resolution Imaging Spectroradiometer (MODIS) burned area product (2003–2013). A stratified random sampling approach was used to assess biodiversity across three dominant landscapes (Nwambia Sandveld‐NS, Lebombo North‐LN, and Shrubveld Mopane on Calcrete‐C) and two FF levels ( low —twice or less; and high —3 times or more, during 10 years). Six ha were sampled in each stratum, except for the LN versus high FF in which low accessibility allowed only 3 ha sampling. FF was higher in NS and LN landscapes, where 25% and 34% of the area, respectively, burned more than three times in 10 years. The landscape type was the main determinant of grass composition and biomass. However, in the sandy NS biomass was higher under high FF. The three landscapes supported three different tree/shrub communities, but FF resulted in compositional variations in NS and LN. Fire frequency had no marked influence on woody structural parameters (height, density, and phytomass). We concluded that the savannas in LNP are mainly driven by landscape type (geology), but FF may impose specific modifications. We recommend a fire laissez‐faire management system for most of the park and a long‐term monitoring system of vegetation to address vegetation changes related to fire. Fire management should be coordinated with the neighboring Kruger National Park, given its long history of fire management. Synthesis : This study revealed that grass and tree/shrub density, biomass, and composition in LNP are determined by the landscape type, but FF determines some important modifications. We conclude that at the current levels FF is not dramatically affecting the savanna ecosystem in the LNP (Figure 1). However, an increase in FF may drive key ecosystem changes in grass biomass and tree/shrub species composition, height, phytomass, and density.
Fire behavior is well described by a fire’s direction, rate of spread, and its energy release rate. Fire intensity as defined by Byram (1959) is the most commonly used term describing fire behavior in the wildfire community. It is, however, difficult to observe from space. Here, we assess fire spread and fire radiative power using infrared sensors with different spatial, spectral and temporal resolutions. The sensors used offer either high spatial resolution (Sentinel-2) for fire detection, but a low temporal resolution, moderate spatial resolution and daily observations (VIIRS), and high temporal resolution with low spatial resolution and fire radiative power retrievals (Meteosat SEVIRI). We extracted fire fronts from Sentinel-2 (using the shortwave infrared bands) and use the available fire products for S-NPP VIIRS and Meteosat SEVIRI. Rate of spread was analyzed by measuring the displacement of fire fronts between the mid-morning Sentinel-2 overpasses and the early afternoon VIIRS overpasses. We retrieved FRP from 15-min Meteosat SEVIRI observations and estimated total fire radiative energy release over the observed fire fronts. This was then converted to total fuel consumption, and, by making use of Sentinel-2-derived burned area, to fuel consumption per unit area. Using rate of spread and fuel consumption per unit area, Byram’s fire intensity could be derived. We tested this approach on a small number of fires in a frequently burning West African savanna landscape. Comparison to field experiments in the area showed similar numbers between field observations and remote-sensing-derived estimates. To the authors’ knowledge, this is the first direct estimate of Byram’s fire intensity from spaceborne remote sensing data. Shortcomings of the presented approach, foundations of an error budget, and potential further development, also considering upcoming sensor systems, are discussed.
ABSTRACT:Current space-borne thermal infrared satellite systems aimed at land surface remote sensing retain some significant deficiencies, in particular in terms of spatial resolution, spectral coverage, number of imaging bands and temperature-emissivity separation. The proposed VISible-to-thermal IR micro-SATellite (VISIR-SAT) mission addresses many of these limitations, providing multi-spectral imaging data with medium-to-high spatial resolution (80m GSD from 800 km altitude) in the thermal infrared (up to 6 TIR bands, between 8 and 11µm) and in the mid infrared (1 or 2 MIR bands, at 4µm). These MIR/TIR bands will be co-registered with simultaneously acquired high spatial resolution (less than 30 m GSP) visible and near infrared multi-spectral imaging data. To enhance the spatial resolution of the MIR/TIR multi-spectral imagery during daytime, data fusion methods will be applied, such as the Multi-sensor Multi-resolution Technique (MMT), already successfully tested over agricultural terrain. This image processing technique will make generation of Land Surface Temperature (LST) EO products with a spatial resolution of 30 x 30 m² possible. For high temperature phenomena such as vegetation-and peat-fires, the Fire Disturbance Essential Climate Variables (ECV) "Active fire location" and "Fire Radiative Power" will be retrieved with less than 100 m spatial resolution. Together with the effective fire temperature and the spatial extent even for small fire events the innovative system characteristics of VISIR-SAT go beyond existing and planned IR missions. The comprehensive and physically high-accuracy products from VISIR-SAT (e.g. for fire monitoring) may synergistically complement the high temperature observations of Sentinel-3 SLSTR in a unique way. Additionally, VISIR-SAT offers a very agile sensor system, which will be able to conduct intelligent and flexible pointing of the sensor's line-of-sight with the aim to provide global coverage of cloud free imagery every 5-10 days with only one satellite (using near real time cloud cover information). VISIR-SAT may be flown in convoy with Sentinel-3 and/or Sentinel-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.