Magnetic hybrid assemblies of Ag and Fe3O4 nanoparticles with biocompatibly immobilized myoglobin (Mb) were designed to detect and capture toxic targets (NO2-, CN-, and H2O2). Mb was covalently attached to chitosan-coated magnetic silver hybrid nanoparticles (M-Ag-C) via glutaraldehyde that serves as a linker for the amine groups of Mb and chitosan. As verified by surface-enhanced resonance Raman (SERR) spectroscopy, this immobilization strategy preserves the native structure of the bound Mb as well as the binding affinity for small molecules. On the basis of characteristic spectral markers, binding of NO2-, CN-, and H2O2 could be monitored and quantified, demonstrating the high sensitivity of this approach with detection limits of 1 nM for nitrite, 0.2 μM for cyanide, and 10 nM for H2O2. Owing to the magnetic properties, these particles were collected by an external magnet to achieve an efficient decontamination of the solutions as demonstrated by SERR spectroscopy. Thus, the present approach combines the highly sensitive analytical potential of SERR spectroscopy with an easy approach for decontamination of aqueous solutions with potential applications in food and in environmental and medical safety control.
Micromixer technology was used to prepare polymeric vesicles (Pluronic® L-121) dual loaded with the anti-cancer drug camptothecin and magnetic nanoparticles. Successful incorporation of the magnetic nanoparticles was confirmed by transmission electron microscopy. Dynamic light scattering measurements showed a relatively narrow size distribution of the hybrid polymersomes. Camptothecin polymersomes reduced the cell viability of prostate cancer cells (PC-3) measured after 72 h significantly, while drug-free polymersomes showed no cytotoxic effects. Covalent attachment of a cancer targeting peptide (bombesin) as well as a fluorescent label (Alexa Fluor® 647) to the hybrid polymersomes was performed and specific cell binding and internalization were shown by flow cytometry and confocal microscopy. Relaxometry measurements clearly demonstrated the capacity of magnetic polymersomes to generate significant T2-weighted MRI contrast and potentially allow for direct monitoring of the biodistribution of the polymersomes. Micromixer technology as an easy, fast and efficient way to manufacture hybrid polymersomes as theranostic drug delivery devices is a further step from basic research to personalized medicine.
Iron oxide (Fe3O4) nanoparticles have been used in many biomedical approaches. The toxicity of Fe3O4 nanoparticles on mammalian cells was published recently. Though, little is known about the viability of human cells after treatment with Fe3O4 nanoparticles. Herein, we examined the toxicity, production of reactive oxygen species, and invasive capacity after treatment of human dermal fibroblasts (HDF) and cells of the squamous tumor cell line (SCL-1) with Fe3O4 nanoparticles. These nanoparticles had an average size of 65 nm. Fe3O4 nanoparticles induced oxidative stress via generation of reactive oxygen species (ROS) and subsequent initiation of lipid peroxidation. Furthermore, the question was addressed of whether Fe3O4 nanoparticles affect myofibroblast formation, known to be involved in tumor invasion. Herein, Fe3O4 nanoparticles prevent the expression alpha-smooth muscle actin and therefore decrease the number of myofibroblastic cells. Moreover, our data show in vitro that concentrations of Fe3O4 nanoparticles, which are nontoxic for normal cells, partially reveal a ROS-triggered cytotoxic but also a pro-invasive effect on the fraction of squamous cancer cells surviving the treatment with Fe3O4 nanoparticles. The data herein show that the Fe3O4 nanoparticles appear not to be adequate for use in therapeutic approaches against cancer cells, in contrast to recently published data with cerium oxide nanoparticles.
SummaryA novel active biocatalytic reaction system is proposed by covalently immobilizing porcine pancreas trypsin within the thermoresponsive polymer shell of superparamagnetic Fe3O4 nanoparticles.Active ester-functional nanocarriers suitable for the immobilization of amino functional targets are obtained in a single polymerization step by grafting-from copolymerization of an active ester monomer from superparamagnetic cores. The comonomer, oligo(ethylene glycol) methyl ether methacrylate, has excellent water solubility at room temperature, biocompatibility, and a tunable lower critical solution temperature (LCST) in water. The phase separation can alternatively be initiated by magnetic heating caused by magnetic losses in ac magnetic fields.The immobilization of porcine pancreas trypsin to the core–shell nanoparticles results in highly active, nanoparticulate biocatalysts that can easily be separated magnetically. The enzymatic activity of the obtained biocatalyst system can be influenced by outer stimuli, such as temperature and external magnetic fields, by utilizing the LCST of the copolymer shell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.