Human cytomegalovirus (HCMV) retinitis causing retinal detachment and destruction of the blood-retina barrier is closely related to retinal hemorrhage/coagulation. However, the effects of procoagulants on HCMV (re)activation in retinal cells have not been investigated yet. Therefore, we studied whether thrombin modulates the expression of HCMV immediate early (IE) and late (L) genes in cultured human retinal pigment epithelial cells (RPE). Thrombin specifically stimulated the protease-activated receptor-1 (PAR-1) on RPE and, surprisingly, inhibited basal and 12,0-tetradecanoylphorbol 13-acetate-stimulated HCMV IE gene expression in infected RPE. On the other hand, HCMV strongly induced Sp1 DNA binding activity, which was prevented by thrombin/PAR1-mediated Sp1 hyperphosphorylation. Our data suggest that thrombin/PAR-1 may inhibit Sp1-dependent HCMV replication, which might be an important regulatory mechanism for HCMV persistence and replication in RPE.
AZT resistant human T-lymphoid H9 cells, deficient in TK gene expression, re-expressed TK mRNA and regained the ability to metabolize AZT by exposure to the demethylation agent azacytidine (AzaCd). Cytotoxic and anti-HIV-1 effects of AZT were increased in H9 AZT resistant cells treated with AzaCd when compared to untreated cells. This leads to the assumption that drug induced DNA hypermethylation was involved in the TK gene-silencing mechanism. Our results suggest approaches using modulation of gene methylation for increasing antiviral efficiency of drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.