Referring to the current results, athletes are recommended to focus on vertical rifle sway in prone position and on body sway across the shooting line during standing shooting when fatigued.
The aim of the current study was to examine postural balance, rifle stability and shooting performance in biathletes, analysing the basic precision shooting skills without physical load in different performance groups. Therefore, kinematic and kinetic data from the World Cup (WC; n = 8), the European Cup (EC; n = 13) and a federal youth athletes' squad (n = 15) were recorded on an indoor shooting range. The participants had to shoot ten 5-shot-clips without physical load. Postural balance and rifle stability were measured by VICON (Oxford, UK) and PEDAR (Munich, Germany) systems over the last 0.6 s before firing. WC and EC groups showed lower body and rifle sway (mainly in cross-shooting direction) compared to youth athletes (p < 0.05). Postural balance and gun stability predominantly in cross-shooting direction were negatively correlated to shooting performance (r = −0.33 to −0.59; p < 0.05). The present data indicate the relevance of low body and rifle sway primarily in cross-shooting direction for a successful basic biathlon standing shooting at rest. Special biathlon specific balance and rifle stability training forms used in basic shooting trainings can be recommended.
The biathlon, an Olympic sporting discipline that combines cross-country skiing with rifle marksmanship, entails considerable physiological demands, as well as fine motor control while shooting after intense exercise and under mental pressure. Although much of our knowledge about cross-country skiing is probably also applicable to the biathlon, carrying the rifle and shooting under stress make this discipline somewhat unique. The present review summarizes and examines the scientific literature related to biathlon performance, with a focus on physiological and biomechanical factors and shooting technique, as well as psychophysiological aspects of shooting performance. We conclude with suggestions for future research designed to extend our knowledge about the biathlon, which is presently quite limited.
This study explored the influence of sub-maximal cardiovascular load on electroencephalographic (EEG) activity preceding biathlon shooting. Frontal-midline theta and alpha power were examined to assess monitoring processes and cortical inhibition, respectively. Thirteen experienced biathletes (mean age: 17years; 5 males, 8 females) fired sets of five consecutive shots from the standing position at a 50-meter-distant target, under two fixed-order conditions: (i) at rest and (ii) immediately after 3-minute exercise on a bicycle ergometer at 90% of maximum heart rate (HR). HR and rate of physical exertion (RPE) were measured as manipulation checks. Shooting accuracy was assessed in target rings for each shot. Frontal-midline theta and alpha power were computed in the last second preceding each shot from average-reference 61-channel EEG and inter-individual differences were minimized through a median-scaled log transformation (Appendix). HR and RPE increased under cardiovascular load, however, shooting accuracy did not change. Pre-shooting frontal-midline theta power decreased, whereas alpha power increased over temporal and occipital - but not central - regions. These changes were larger for greater HR values. Additionally, higher frontal-midline theta, lower left-central alpha, and higher left-temporal alpha power were associated with more accurate shooting. These findings suggest that monitoring processes are beneficial to shooting performance but can be impaired by sub-maximal cardiovascular load. Greater inhibition of movement-irrelevant regions (temporal, occipital) and concomitant activation of movement-related regions (central) indicate that greater neural efficiency is beneficial to shooting performance and can allow trained biathletes to shoot accurately despite physically demanding conditions.
This study examined the influence of physical exercise on the relation between shooting accuracy and the phase of the cardiac cycle in which the shot is fired. Thirteen experienced biathletes (8 females, mean age 17 years) fired from the standing position at rest and right after a submaximal exercise on a bicycle ergometer. Shooting accuracy and the timing of each shot relative to the R-waves of the electrocardiogram (ECG) were recorded. Best shots (with greatest accuracy) and worst shots (with lowest accuracy) were fired prevalently in different phases of the cardiac cycle. In the rest condition, best shots were fired less frequently from 200 to 300 ms and more frequently from 500 to 600 ms after the R-wave, compared to worst shots. In the exercise condition, best shots were fired less frequently from 100 to 200 ms after the R-wave and from 20% to 30% of the R-R interval, compared to worst shots. These findings support the hypothesis that shooting accuracy is influenced by the cardiac cycle phase due to the ballistocardiac recoil generated at each heartbeat. To achieve best results athletes could be trained (e.g. through biofeedback) to fire within a specific phase of the cardiac cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.