Abstract. First, we introduce the notion of divertibility as a protocol property as opposed to the existing notion as a language property (see Okamoto, Ohta [0090]). We give a definition of protocol divertibility that applies to arbitrary 2-party protocols and is compatible with Okamoto and Ohta's definition in the case of interactive zero-knowledge proofs. Other important examples falling under the new definition are blind signature protocols. We propose a sufficiency criterion for divertibility that is satisfied by many existing protocols and which, surprisingly, generalizes to cover several protocols not normally associated with divertibility (e.g., Diffie-Hellman key exchange). Next, we introduce atomic proxy cryptography, in which an atomic proxy ]unction, in conjunction with a public proxy key, converts ciphertexts (messages or signatures) for one key into ciphertexts for another. Proxy keys, once generated, may be made public and proxy functions applied in untrusted environments. We present atomic proxy functions for discrete-log-based encryption, identification, and signature schemes. It is not clear whether atomic proxy functions exist in general for all public-key cryptosystems. Finally, we discuss the relationship between divertibility and proxy cryptography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.