Constitutive NF-κB signaling represents a hallmark of chronic inflammation and autoimmune diseases. The E3 ligase TNF receptor-associated factor 6 (TRAF6) acts as a key regulator bridging innate immunity, pro-inflammatory cytokines, and antigen receptors to the canonical NF-κB pathway. Structural analysis and point mutations have unraveled the essential role of TRAF6 binding to the E2-conjugating enzyme ubiquitin-conjugating enzyme E2 N (Ubc13 or UBE2N) to generate Lys-linked ubiquitin chains for inflammatory and immune signal propagation. Genetic mutations disrupting TRAF6-Ubc13 binding have been shown to reduce TRAF6 activity and, consequently, NF-κB activation. However, to date, no small-molecule modulator is available to inhibit the TRAF6-Ubc13 interaction and thereby counteract NF-κB signaling and associated diseases. Here, using a high-throughput small-molecule screening approach, we discovered an inhibitor of the TRAF6-Ubc13 interaction that reduces TRAF6-Ubc13 activity both and in cells. We found that this compound, C25-140, impedes NF-κB activation in various immune and inflammatory signaling pathways also in primary human and murine cells. Importantly, C25-140 ameliorated inflammation and improved disease outcomes of autoimmune psoriasis and rheumatoid arthritis in preclinical mouse models. Hence, the first-in-class TRAF6-Ubc13 inhibitor C25-140 expands the toolbox for studying the impact of the ubiquitin system on immune signaling and underscores the importance of TRAF6 E3 ligase activity in psoriasis and rheumatoid arthritis. We propose that inhibition of TRAF6 activity by small molecules represents a promising novel strategy for targeting autoimmune and chronic inflammatory diseases.
The total synthesis of the naturally occurring antibiotic GE81112A, a densely functionalized tetrapeptide, is reported. Comparison of spectral data with those of the natural product and the lack of biological activity of the synthesized compound led us to revise the published configuration of the 3-hydroxypipecolic acid moiety. This hypothesis was fully validated by the synthesis of the corresponding epimer.
Supplementing a culture of a mutant strain of Actinosynnema pretiosum that is unable to biosynthesize aminohydroxy benzoic acid (AHBA), with 3-azido-5-hydroxy-benzoic acid and 3-azido-5-amino-benzoic acid, unexpectedly yielded anilino ansamitocins instead of the expected azido derivatives. This is the first example of the bioreduction of organic azides. The unique nature of these results was demonstrated when 3-azido-5-amino-benzoic acid was fed to the corresponding AHBA blocked mutant of Streptomyces hygroscopicus, the geldanamycin producer. This mutasynthetic experiment yielded the fully processed azido derivative of geldanamycin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.