Current microbial inhibition strategies based on planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilm communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. All aspects of biofilm measurement, monitoring, dispersal, control, and inhibition are becoming issues of increasing importance. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms in addition to many other advantages. The dispersal properties of biosurfactants have been shown to rival those of conventional inhibitory agents against bacterial and yeast biofilms. This makes them suitable candidates for use in new generations of microbial dispersal agents and for use as adjuvants for existing microbial suppression or eradication strategies. In this review, we explore aspects of biofilm characteristics and examine the contribution of biologically derived surface-active agents (biosurfactants) to the disruption or inhibition of microbial biofilms.
Given the increased reporting of multi-resistant bacteria and the shortage of newly approved medicines, researchers have been looking towards extreme and unusual environments as a new source of antibiotics. Streptomyces currently provides many of the world’s clinical antibiotics, so it comes as no surprise that these bacteria have recently been isolated from traditional medicine. Given the wide array of traditional medicines, it is hoped that these discoveries can provide the much sought after core structure diversity that will be required of a new generation of antibiotics. This review discusses the contribution of Streptomyces to antibiotics and the potential of newly discovered species in traditional medicine. We also explore how knowledge of traditional medicines can aid current initiatives in sourcing new and chemically diverse antibiotics.
Mucosal surfaces of the reproductive tract as well as their secretions have important roles in preventing sexual transmission of HIV-1. In the current study, the majority of the intrinsic anti-HIV-1 activity of human seminal plasma (SP) was determined to reside in the cationic polypeptide fraction. Antiviral assays utilizing luciferase reporter cells and lymphocytic cells revealed the ability of whole SP to prevent HIV-1 infection, even when SP was diluted 3200-fold. Subsequent fractionation by continuous flow acid-urea (AU)-PAGE and antiviral testing revealed that cationic polypeptides within SP were responsible for the majority of anti-HIV-1 activity. A proteomic approach was utilized to resolve and identify 52 individual cationic polypeptides that contribute to the aggregate anti-HIV-1 activity of SP. One peptide fragment of semenogelin I, termed SG-1, was purified from SP by a multistep chromatographic approach, protein sequenced, and determined to exhibit anti-HIV-1 activity against HIV-1. Anti-HIV-1 activity was transient, as whole SP incubated for prolonged time intervals exhibited a proportional decrease in anti-HIV-1 activity that was directly attributed to the degradation of semenogelin I peptides. Collectively, these results indicate that the cationic polypeptide fraction of SP is active against HIV-1, and that semenogelin-derived peptides contribute to the intrinsic anti-HIV-1 activity of SP.
Summary Nasal carriage of Staphylococcus aureus is an important source of nosocomial infection and community‐acquired methicillin‐resistant S. aureus (MRSA). Previous studies by our laboratory revealed that nasal carriage of S. aureus is accompanied by subclinical inflammation, which is insufficient to prevent colonization, and that carriage might also be a result of adaptation and selection of certain S. aureus strains to the host's nasal environment. In the present study we observed that a carrier strain of S. aureus preferentially colonizes and attaches to nasal epithelial cells (NEC) compared to a non‐carrier S. aureus strain. Conversely, when naive NEC were pretreated with interleukin‐1β for 24 hr, the growth and attachment of the carrier strain of S. aureus were significantly reduced in comparison to the non‐carrier strain, emphasizing the pivotal role played by host innate immunity in the initial events of nasal carriage. While both strains up‐regulated the expression of the pattern recognition receptor, Toll‐like receptor 2 (TLR2), NEC exposed to the nasal carrier strain had a 4‐hr delay in TLR2 expression compared with NEC exposed to non‐carrier S. aureus. Moreover, even after 20 hr of colonization the expression of two principal epithelial antimicrobial peptides, human β‐defensin‐2 and human β‐defensin‐3, was negligibly induced in NEC exposed to the nasal carrier strain of S. aureus in comparison to the non‐carrier strain. These results suggest that carrier strains of S. aureus retain a competitive advantage over non‐carrier strains by delaying the host's innate response to epithelial colonization and infection.
SummaryDue to the increasing prevalence of nosocomial and community-acquired antibiotic resistant Staphylococcus aureus (SA), understanding the determinants of SA nasal carriage has become a major imperative. Previous research has revealed many host and bacterial factors that contribute to SA nasal carriage. To assess bacterial factors that facilitate nasal carriage, we compared the exoproteome of a nasal carrier strain of SA to a genetically similar non-carrier strain. Additionally, the carrier strain biofilm exoproteome was also compared against its planktonic counterpart. Using high throughput proteomics, it was observed that the carrier strain of SA secretes a greater number of proteins that may promote successful colonization of the human nose, including cell attachment and immunoevasive proteins, than the non-carrier strain. Similarly, SA carrier strain biofilm exoproteome contains a greater number of immunoevasive proteins than its planktonic counterpart. Analysis of the most abundant immunoevasive proteins revealed that Staphylococcal protein A was present at significantly higher levels in carrier than in non-carrier strains of SA, suggesting an association with nasal carriage. While further analyses of specific differences between carrier and non-carrier strains of SA are required, many of the differentially expressed proteins identified can be considered to be putative determinants of nasal carriage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.