The primary requirement for the development of tools for extreme ultraviolet lithography (EUVL) has been the identification and optimization of suitable sources. These sources must be capable of producing hundreds of watts of extreme ultraviolet (EUV) radiation within a wavelength bandwidth of 2% centred on 13.5 nm, based on the availability of Mo/Si multilayer mirrors (MLMs) with a reflectivity of ∼70% at this wavelength. Since, with the exception of large scale facilities, such as free electron lasers, such radiation is only emitted from plasmas containing moderately to highly charged ions, the source development prompted a large volume of studies of laser produced and discharge plasmas in order to identify which ions were the strongest emitters at this wavelength and the plasma conditions under which their emission was optimized. It quickly emerged that transitions of the type 4p64dn − 4p54dn+1 + 4dn−14f in the spectra of Sn IX to SnXIV were the best candidates and work is still ongoing to establish the plasma conditions under which their emission at 13.5 nm is maximized. In addition, development of other sources at 6.X nm, where X ∼ 0.7, has been identified as the wavelength of choice for so-called Beyond EUVL (BEUVL), based on the availability of La/B based MLMs, with theoretical reflectance approaching 80% at this wavelength. Laser produced plasmas of Gd and Tb have been identified as potential source elements, as n = 4 − n = 4 transitions in their ions emit strongly near this wavelength. However to date, the highest conversion efficiency (CE) obtained, for laser to BEUV energy emitted within the 0.6% wavelength bandwidth of the available mirrors is only 0.8%, compared with values of 5% for the 2% bandwidth relevant for the Mo/Si mirrors at 13.5 nm. This suggests a need to identify other potential sources or the selection of other wavelengths for BEUVL. This review deals with the atomic physics of the highly-charged ions relevant to EUV emission at these wavelengths. It considers the developments that have contributed to the realization of the 5% CE at 13.5 nm which underpins the production of high-volume lithography tools, and those that will be required to realize BEUV lithography.
We have demonstrated a laser-produced plasma extreme ultraviolet source operating in the 6.5–6.7 nm region based on rare-earth targets of Gd and Tb coupled with a Mo/B4C multilayer mirror. Multiply charged ions produce strong resonance emission lines, which combine to yield an intense unresolved transition array. The spectra of these resonant lines around 6.7 nm (in-band: 6.7 nm ±1%) suggest that the in-band emission increases with increased plasma volume by suppressing the plasma hydrodynamic expansion loss at an electron temperature of about 50 eV, resulting in maximized emission.
Spectra of laser-produced plasmas of the elements from tin to iodine contain weak bands of quasicon-0 tinuum overlaid by weak emission lines in the 70 -120-A region. Multiconfiguration-Dirac-Fock calculations show that these features are consistent with theoretical spectra for 4d 4d -'(Sf +6p) transitions in a number of adjacent ion stages which are predicted to produce unresolved transition arrays (UTA) in this spectral region. Moreover, the calculations predict a gradual decrease of 4d 5f osc-illator strength with increasing ionization up to the eleventh spectrum where ggf(4d 5f) =0.-However, inclusion of configuration interaction effects between the 4d'nf levels showed that 4d'4f and 4d~5f mixing shifts this minimum to the thirteenth spectrum. The theoretical data were then parametrized within the UTA formalism and the different order moments corresponding to weighted mean energy, variance, and skewness coefficient evaluated. PACS number(s): 32.70.n, 31.20.d, 32.30.Jc gress [16]. In this work we show that the weak emission bands observed in the vuv at A. &100 A are consistent with unresolved transition arrays of this type.
An examination of the influence of target composition and viewing angle on the extreme ultraviolet spectra of laser produced plasmas formed from tin and tin doped planar targets is reported. Spectra have been recorded in the 9–17nm region from plasmas created by a 700mJ, 15ns full width at half maximum intensity, 1064nm Nd:YAG laser pulse using an absolutely calibrated 0.25m grazing incidence vacuum spectrograph. The influence of absorption by tin ions (SnI–SnX) in the plasma is clearly seen in the shape of the peak feature at 13.5nm, while the density of tin ions in the target is also seen to influence the level of radiation in the 9–17nm region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.