Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disorder affecting motoneurons and the SOD1(G93A) transgenic mice are widely employed to study disease physiopathology and therapeutic strategies. Despite the cellular and biochemical evidences of an early motor system dysfunction, the conventional behavioral tests do not detect early motor impairments in SOD1 mouse model. We evaluated early changes in motor behavior of ALS mice by doing the analyses of tail elevation, footprint, automatic recording of motor activities by means of an infrared motion sensor activity system and electrophysiological measurements in male and female wild-type (WT) and SOD1(G93A) mice from postnatal day (P) 20 up to endpoint. The classical evaluations of mortality, weight loss, tremor, rotometer, hanging wire and inclined plane were also employed. There was a late onset (after P90) of the impairments of classical parameters and the outcome varied between genders of ALS mice, being tremor, cumulative survival, weight loss and neurological score about 10 days earlier in male than female ALS mice and also about 20 days earlier in ALS males regarding rotarod and hanging wire performances. While diminution of hindpaw base was 10 days earlier in ALS males (P110) compared to females, the steep length decreased 40 days earlier in ALS females (P60) than ALS males. The automatic analysis of motor impairments showed substantial late changes (after P90) of motility and locomotion in the ALS females, but not in the ALS males. It was surprising that the scores of tail elevation were already decreased in ALS males and females by P40, reaching the minimal values at the endpoint. The electrophysiological analyses showed early changes of measures in the ALS mouse sciatic nerve, i.e., decreased values of amplitude (P40) and nerve conduction velocity (P20), and also an increased latency (P20) reaching maximal level of impairments at the late disease phase. The early changes were not accompanied by reductions of neuronal protein markers of neurofilament 200 and ChAT in the ventral part of the lumbar spinal cord of P20 and P60 ALS mice by means of Western blot technique, despite remarkable decreases of those protein levels in P120 ALS mice. In conclusion, early changes of motor behavior and electrophysiological parameters in ALS mouse model must be taken into attention in the analyses of disease mechanisms and therapeutic effects.
Basic fibroblast growth factor (bFGF, FGF-2) is a trophic factor for neurons and astrocytes and has recently been demonstrated in the vast majority of dopamine (DA) neurons of the ventral midbrain of the rat. Potential neuroprotective actions of FGF-2 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model have also been reported. The actions of the FGF-2 have now been further analyzed in a combined morphological and behavioural analysis in the MPTP model of the adult black mouse, using a continuous human recombinant FGF-2 (hrFGF-2) intraventricular (i.v.t.) administration in a heparin-containing (10 IU heparin/ml) mock cerebrospinal fluid (CSF) solution. Tyrosine hydroxylase (TH) immunocytochemistry in combination with computer assisted microdensitometry demonstrated a counteraction of the MPTP-induced disappearance of neostriatal TH-immunoreactive (ir) nerve terminals following the FGF-2 treatment. Unbiased estimates of the total number of nigral TH ir neurons, using stereological methods involving the optical disector (Olympus), showed that the MPTP-induced reduction in the number of nigral TH ir nerve cell bodies counterstained with cresyl violet (CV; by 56%) was partially counteracted by the FGF-2 treatment (by 26%). The behavioral analysis demonstrated an almost full recovery of the MPTP-induced reduction of the locomotor activity after FGF-2 treatment. This action was maintained also 1 week after cessation of treatment. The hrFGF-2 produced an astroglial reaction as determined in the lateral neostriatum and in the substantia nigra (SN) far from the site of the infusion, indicating that the growth factor may have reached these regions by diffusion to activate the astroglia. Immunocytochemistry revealed FGF-2 immunoreactivity (IR) in the nuclei of the astroglia cell population in the dorsomedial striatum and the microdensitometric and morphometric evaluation demonstrated an increase in the number, but not in the intensity, of these profiles on the cannulated side, suggesting the possibility that hrFGF-2 stimulates FGF-2 synthesis in astroglial cells with low endogenous FGF-2 IR. These results indicate that hrFGF-2, directly and/or indirectly via astroglia, upon i.v.t. infusion exerts trophic effects on the nigrostriatal DA system and may increase survival of nigrostriatal DA nerve cells exposed to the MPTP neurotoxin
Astroglial and microglial activation was analyzed in adult male Wistar rats after a unilateral striatal injection of different doses (8, 4 and 1 micrograms) of 6-hydroxydopamine (6-OHDA). Control animals received the injection of the same volume of the solvent. The rotational behavior was registered by a rotometer 24 and 72 hours, 7, 10, 14 and 22 days after lesion. Following, animals were sacrificed and the tyrosine hydroxylase (TH) positive dopamine cells, the glial fibrillary acidic protein (GFAP) immunolabeled astrocytes and the OX42 immunoreactive microglia were visualized by mean of immunohistochemistry and quantified by stereologic method employing the optical disector and the point intercepts. The apomorphine (0.5 mg/kg)-induced circling behavior was seen only after 8 micrograms of 6-OHDA from 72 hours postlesion until sacrifice. Decreases of the TH immunoreactive terminals and cell bodies were found in the sampled fields of the striatum and pars compacta of the substantia nigra (SNc), respectively, after 8 and 4 micrograms of 6-OHDA. The GFAP immunohistochemistry revealed increases in the number/density of astroglial cells in the ipsilateral neostriatum (137% of control) and ipsilateral SNc (83% of control) and also in the volumeal fraction of the astroglial processes in the ipsilateral neostriatum (30% of control) and ipsilateral SNc (38% of control) in the rats with higher dose of the neurotoxin. Increases in the number of OX42 microglial labeled profiles and in the volumeal fraction of microglial processes were found in the ipsilateral neostriatum (67% and 27%, respectively, of control) and ipsilateral SNc (100% and 50%, respectively, of control) in the 8 micrograms 6-OHDA injected rats. These results suggest that the retrograde degeneration induced by a intrastriatal injection of a small dose of the 6-OHDA leads to an astroglial and microglial reaction in the nigrostriatal dopamine pathway. The interaction between activated glial cells may be involved in the wounding and repair events in the partial lesioned nigrostriatal system as well as in the paracrine responses to surviving dopamine neurons.
Corticosteroids cause muscle atrophy by acting on proteasomal and lysosomal systems and by affecting pathways related to muscular trophysm, such as the IGF-1/PI-3k/Akt/mTOR. Omega-3 fatty acid (n-3) has been used beneficially to attenuate muscle atrophy linked to sepsis and cachexia; however, its effect on dexamethasone-induced muscle atrophy has not been evaluated. Objectives. We evaluated whether n-3 supplementation could mitigate the development of dexamethasone-induced muscle atrophy. Methods. Two groups of Wistar rats were orally supplemented with n-3 or vehicle solution for 40 days. In the last 10 days, dexamethasone, or saline solution, was administrated establishing four groups: control, dexamethasone, n-3, and dexamethasone + n-3. The cross-sectional areas of muscle fibers, gene expression (MyoD, Myogenin, MuRF-1, and Atrogin-1), and protein expression (Akt, GSK3β, FOXO3a, and mTOR) were assessed. Results. Dexamethasone induced a significant loss in body and muscle weight, atrophy in type 2B fibers, and decreased expression of P-Akt, P-GSK3β, and P-FOXO3a. N-3 supplementation did not attenuate the negative effects of dexamethasone on skeletal muscle; instead, it caused atrophy in type 1, 2A, reduced the expression of Myogenin, and increased the expression of Atrogin-1. Conclusion. Food supplements containing n-3 are usually healthful, but they may potentiate some of the side effects of glucocorticoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.