Background Bone reconstruction in congenital craniofacial differences, which affect about 2–3% of newborns, has long been the focus of intensive research in the field of bone tissue engineering. The possibility of using mesenchymal stromal cells in regenerative medicine protocols has opened a new field of investigation aimed at finding optimal sources of multipotent cells that can be isolated via non-invasive procedures. In this study, we analyzed whether levator veli palatini muscle fragments, which can be readily obtained in non-invasive manner during palatoplasty in cleft palate patients, represent a novel source of MSCs with osteogenic potential. Methods We obtained levator veli palatini muscle fragments (3–5 mm3), during surgical repair of cleft palate in 5 unrelated patients. Mesenchymal stromal cells were isolated from the muscle using a pre-plating technique and other standard practices. The multipotent nature of the isolated stromal cells was demonstrated via flow cytometry analysis and by induction along osteogenic, adipogenic, and chondrogenic differentiation pathways. To demonstrate the osteogenic potential of these cells in vivo, they were used to reconstruct a critical-sized full-thickness calvarial defect model in immunocompetent rats. Results Flow cytometry analysis showed that the isolated stromal cells were positive for mesenchymal stem cell antigens (CD29, CD44, CD73, CD90, and CD105) and negative for hematopoietic (CD34 and CD45) or endothelial cell markers (CD31). The cells successfully underwent osteogenic, chondrogenic, and adipogenic cell differentiation under appropriate cell culture conditions. Calvarial defects treated with CellCeram™ scaffolds seeded with the isolated levator veli palatini muscle cells showed greater bone healing compared to defects treated with acellular scaffolds. Conclusion Cells derived from levator veli palatini muscle have phenotypic characteristics similar to other mesenchymal stromal cells, both in vitro and in vivo. Our findings suggest that these cells may have clinical relevance in the surgical rehabilitation of patients with cleft palate and other craniofacial anomalies characterized by significant bone deficit.
Background. Bone reconstruction in congenital craniofacial differences, which affect about 2-3% of newborns, has long been the focus of intensive research in the field of bone tissue engineering. The possibility of using mesenchymal stem cells in regenerative medicine protocols has opened a new field of investigation aimed at finding optimal sources of multipotent stem cells that can be isolated via non-invasive procedures. Here we analysed whether levator veli palatini muscle fragments, which can be readily obtained in non-invasive manner during surgical rehabilitation of cleft patients during palatoplasty, represent a novel source of MSCs with osteogenic potential. Methods. We obtained levator veli palatini muscle fragments, in non-invasive procedure during surgical rehabilitation of 5 unrelated cleft palate patients (palatoplasty surgery). The levator veli palatini muscle fragments was used to obtain the mesenchymal cells using pre-plating technique in a clean rooms infrastructure and all procedures were performed at good practices of manipulation conditions. To prove that levator veli palatini muscle are mesenchymal stem cells they were induced to flow cytometry analysis and to differentiation into bone, cartilage, fat and muscle. To demonstrate the osteogenic potential of these cells in vivo a bilateral full thickness calvarial defect model was made in immunocompentent rats.Results. Flow cytometry analysis showed that the cells were positive for mesenchymal stem cell antigens (CD29, CD73, CD90), while negative for hematopoietic (CD45) or endothelial cell markers (CD31). Moreover, these cells were capable of undergoing chondrogenic, adipogenic, osteogenic and skeletal muscle cell differentiation under appropriate cell culture conditions characterizing them as mesenchymal stem cell. Defects treated with CellCeramTM scaffolds seeded with levator veli palatini muscle cells showed significantly greater bone healing compared to defects treated with acellular scaffolds. Conclusion. We have demonstrated that cells derived from levator veli palatini muscle have phenotypic characteristics similar to other mesenchymal stem cells, both in vitro and in vivo. Our findings suggest that these cells may have clinical relevance in the rehabilitation of patients with cleft palate and other craniofacial anomalies characterized by significant bone deficit.
Background. Bone reconstruction in congenital craniofacial differences, which affect about 2-3% of newborns, has long been the focus of intensive research in the field of bone tissue engineering. The possibility of using mesenchymal stromal cells in regenerative medicine protocols has opened a new field of investigation aimed at finding optimal sources of multipotent cells that can be isolated via non-invasive procedures. In this study we analysed whether levator veli palatini muscle fragments, which can be readily obtained in non-invasive manner during palatoplasty in cleft palate patients, represent a novel source of MSCs with osteogenic potential. Methods . We obtained levator veli palatini muscle fragments (3-5 mm 3 ), during surgical repair of cleft palate in 5 unrelated patients. Mesenchymal stromal cells were isolated from the muscle using a pre-plating technique and other standard practices. The multipotent nature of the isolated stromal cells was demonstrated via flow cytometry analysis and by induction along osteogenic, adipogenic and chondrogenic differentiation pathways. To demonstrate the osteogenic potential of these cells in vivo, they were used to reconstruct a critical-sized full-thickness calvarial defect model was in immunocompentent rats. Results. Flow cytometry analysis showed that the isolated stromal cells were positive for mesenchymal stem cell antigens (CD29, CD44, CD73, CD90 and CD105) and negative for hematopoietic (CD34 and CD45) or endothelial cell markers (CD31). The cells successfully underwent osteogenic, chondrogenic and adipogenic cell differentiation under appropriate cell culture conditions. Calvarial defects treated with CellCeram TM scaffolds seeded with the isolated levator veli palatini muscle cells showed greater bone healing compared to defects treated with acellular scaffolds. Conclusion. Cells derived from levator veli palatini muscle have phenotypic characteristics similar to other mesenchymal stromal cells, both in vitro and in vivo . Our findings suggest that these cells may have clinical relevance in the surgical rehabilitation of patients with cleft palate and other craniofacial anomalies characterized by significant bone deficit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.