This work investigated the effect of temperature and acid or alkalis chemical activation by pyrolysis of Açaí seeds (Euterpe Oleraceae, Mart.) on the yield of bio-oil, hydrocarbon content of bio-oil, and chemical composition of aqueous phase. The experiments were carried out at 350, 400, and 450 °C and 1.0 atmosphere, KOH and HCl activation, in laboratory scale. The acidity of bio-oils and aqueous phases determined by AOCS methods, while the chemical composition of bio-oils and aqueous phase by GC-MS and FT-IR. The bio-char characterized by XRD. For the activation with KOH, the XRD analysis identified the presence of Kalicinite (KHCO3), the dominant crystalline phase in bio-char, while an amorphous phase was identified in bio-chars for the activation with HCl. The yield of bio-oil, for the pyrolysis of Açaí seeds activated with KOH, varied between 3.19 and 6.79 (wt.%), showing a smooth exponential increase with temperature. The acidity of bio-oil varied between 12.3 and 257.6 mgKOH/g, decreasing exponentially with temperature, while the acidity of aqueous phase lies between 17.9 and 118.9 mgKOH/g, showing and exponential decay behavior with temperature, demonstrating that higher temperatures favor not only the yield of bio-oil but also bio-oils with lower acidity. For the pyrolysis experiments activated with HCl, the yield of bio-oil varied between 2.13 and 3.37 (wt.%), decreasing linearly with temperature, while that of gas phase varied between 17.91 and 37.94 (wt.%), increasing linearly with temperature. The acidity of bio-oil varied between 127.1 and 218.5 mgKOH/g, increasing with temperature, showing that higher temperatures did not favor the yield of bio-oil and bio-oils acidity. For the chemical activation with KOH, the FT-IR analysis of bio-oils identified the presence of chemical groups characteristics of hydrocarbons and oxygenates, while that of aqueous phase only groups characteristics of oxygenates. For the chemical activation with HCl, the FT-IR analysis of bio-oil and aqueous phases identified only the presence of groups characteristics of oxygenates. For the experiments with KOH activation, the GC-MS of bio-oil identified the presence of hydrocarbons (alkanes, alkenes, cycloalkanes, cycloalkenes, and aromatics) and oxygenates (carboxylic acids, phenols, ketones, and esters). The concentration of hydrocarbons varied between 10.19 to 25.71 (area.%), increasing with temperature, while that of oxygenates from 52.69 to 72.15 (area.%), decreasing with temperature. For the experiments with HCl activation, the GC-MS of bio-oil identified only the presence of oxygenates. Finally, it can be concluded that chemical activation of Açaí seeds with KOH favors the not only the yield of bio-oil but also the content of hydrocarbons while activation with HCl produced bio-oils with only oxygen compounds.
Neste trabalho, investigou-se de forma sistemática a vazão volumétrica da água de processo (consumo + lavagem) no Restaurante Universitário do Campus Básico da Universidade Federal do Pará (RU-UFPa), objetivando-se determinar o consumo médio per capita de água do RU-UFPa, informação fundamental na determinação da carga poluidora dos efluentes líquidos gerados no RU-UFPa. Inicialmente, determinou-se as coordenadas espaciais da área do entorno do RU-UFPa. As medidas de vazão da água de consumo/lavagem foram realizadas ao longo do horário de funcionamento do RU-UFPa, de 07:00 horas às 20:00 horas, com intervalos de tempo de 5.0 minutos, no período de novembro de 2013 (26, 28, e 29/11/2013) a março de 2014 (13 e 14/11/2014), utilizandose um medidor ultrassônico de vazão. Os dados experimentais foram analisados estatisticamente, sendo descritos na forma de hidrogramas da vazão de água de consumo/lavagem, assim como Box-plot da vazão de água de consumo/lavagem. Os hidrogramas mostraram que mais de 90% das medições de vazão apresentaram valores entre 0,4 L/s e 1,0 L/s, ao mesmo tempo em que, o grupo de medições entre 0,6 L/s e 0,8 L/s mostrou a maior frequência na análise estatística, demostrando que a distribuição dos dados se concentrou próximo da média. A análise estatística dos dados comprovou a semelhança entre as medições do mês de novembro de 2013. As medidas da vazão de água de consumo/lavagem do dia 14 de março de 2014 mostrou-se semelhante a do dia 29 de novembro 2013, provavelmente devido o RU-UFPa haver servido o mesmo cardápio. O consumo per capita foi igual a 18,05 L/Refeição*dia. A análise estatística dos dados mostrou que a vazão da água de processo (consumo + lavagem) depende da sazonalidade (verão/inverno), aasim como do cardápio oferecido no RU-UFPa.
This study explores the impact of temperature and molarity in the pyrolysis of Açaí seeds (Euterpe Oleraceae, Mart.) activated with KOH on the yield of bio-oil, hydrocarbon content of bio-oil, and chemical composition of aqueous phase. The experiments were carried out at 350, 400, and 450 °C and 1.0 atmosphere, with 2.0 M KOH, and at 450 °C and 1.0 atmosphere, with 0.5 M, 1.0 M and 2.0 M KOH, in laboratory scale. The composition of bio-oils and aqueous phase determined by GC-MS, while the acid value, a physico-chemical property of fundamental importance in bio-fuels, of bio-oils and aqueous phases by AOCS methods. The solid phase (biochar) characterized by X-ray diffraction (XRD). The diffractograms identified the presence of Kalicinite (KHCO3) in biochar, and those higher temperatures favor the formation peaks of Kalicinite (KHCO3). The pyrolysis of Açaí seeds activated with KOH show bio-oil yields from 3.19 to 6.79 (wt.%), aqueous phase yields between 20.34 and 25.57 (wt.%), solid phase yields (coke) between 33.40 and 43.37 (wt.%), and gas yields from 31.85 to 34.45 (wt.%). The yield of bio-oil shows a smooth exponential increase with temperature. The acidity of bio-oil varied between 12.3 and 257.6 mgKOH/g, decreasing exponentially with temperature, while that of aqueous phase between 17.9 and 118.9 mgKOH/g, showing and exponential decay behavior with temperature, demonstrating that higher temperatures favor not only the yield of bio-oil but also bio-oils with lower acidity. For the experiments with KOH activation, the GC-MS of bio-oil identified the presence of hydrocarbons (alkanes, alkenes, cycloalkanes, cycloalkenes, and aromatics) and oxygenates (carboxylic acids, phenols, ketones, and esters). The concentration of hydrocarbons varied between 10.19 to 25.71 (area.%), increasing with temperature, while that of oxygenates from 52.69 to 72.15 (area.%), decreasing with temperature. For the experiments with constant temperature, the concentrations of hydrocarbons in bio-oil increase exponentially with molarity, while those of oxygenates decrease exponentially, showing that higher molarities favor the formation of hydrocarbons in bio-oil. Finally, it can be concluded that chemical activation of Açaí seeds with KOH favors the not only the yield of bio-oil but also the content of hydrocarbons. The study of process variables is of utmost importance in order to clearly assess reaction mechanisms, economic viability and design goals that could be derived from chemically activated biomass pyrolysis processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.