Rhizobium etli CNPAF512 produces an autoinducer that inhibits growth of Rhizobium leguminosarum bv. viciae 248 and activates the Agrobacterium tumefaciens tra reporter system. Production of this compound in R. etli is dependent on two genes, named cinR and cinI, postulated to code for a transcriptional regulator and an autoinducer synthase, respectively. NMR analysis of the purified molecule indicates that the R. etli autoinducer produced by CinI is a saturated long chain 3-hydroxyacyl-homoserine lactone, abbreviated as 3OH-(slc)-HSL. Using cin-gusA fusions, expression of cinI and cinR was shown to be growth phase-dependent. Deletion analysis of the cinI promoter region indicates that a regulatory element negatively controls cinI expression. Mutational analysis revealed that expression of the cinI gene is positively regulated by the CinR/3OH-(slc)-HSL complex. Besides 3OH-(slc)-HSL, R. etli produces at least six other autoinducer molecules, for which the structures have not yet been revealed, and of which the synthesis requires the previously identified raiI and raiR genes. At least three different autoinducers, including a compound co-migrating with 3OH-(slc)-HSL, are produced in R. etli bacteroids isolated from bean nodules. This is further substantiated by the observation that cinI and cinR are both expressed under symbiotic conditions. Acetylene reduction activity of nodules induced by the cin mutants was reduced with 60 -70% compared with wild-type nodules, indicating that the R. etli 3OH-(slc)-HSL is involved in the symbiotic process. This was further confirmed by transmission electron microscopy of nodules induced by the wild type and the cinI mutant. Symbiosomes carrying cinI mutant bacteroids did not fully differentiate compared with wild-type symbiosomes. Finally, it was observed that the cinR gene and raiR control growth of R. etli.
Triticum aestivum endoxylanase inhibitors (TAXIs) are wheat proteins that inhibit family 11 endoxylanases commonly used in di¡erent (bio)technological processes. Here, we report on the identi¢cation of the TAXI-I gene which encodes a mature protein of 381 amino acids with a calculated molecular mass of 38.8 kDa. When expressed in Escherichia coli, the recombinant protein had the speci¢city and inhibitory activity of natural TAXI-I, providing conclusive evidence that the isolated gene encodes an endoxylanase inhibitor. Bioinformatical analysis indicated that no conserved domains nor motifs common to other known proteins are present. Sequence analysis revealed similarity with a glycoprotein of carrot and with gene families in Arabidopsis thaliana and rice, all with unknown functions. Our data indicate that TAXI-I belongs to a newly identi¢ed class of plant proteins for which a molecular function as glycoside hydrolase inhibitor can now be suggested.
Triticum aestivum xylanase inhibitor (TAXI)-type inhibitors are active against microbial xylanases from glycoside hydrolase family 11, but the inhibition strength and the specificity towards different xylanases differ between TAXI isoforms. Mutational and biochemical analyses of TAXI-I, TAXI-IIA and Bacillus subtilis xylanase A showed that inhibition strength and specificity depend on the identity of only a few key residues of inhibitor and xylanase [Fierens K et al. Crystallographic analysis of the structures of TAXI-IA and TAXI-IIA in complex with glycoside hydrolase family 11 B. subtilis xylanase A now provides a substantial explanation for these observations and a detailed insight into the structural determinants for inhibition strength and specificity. Structures of the xylanase-inhibitor complexes show that inhibition is established by loop interactions with active-site residues and substrate-mimicking contacts in the binding subsites. The interaction of residues Leu292 of TAXI-IA and Pro294 of TAXI-IIA with the )2 glycon subsite of the xylanase is shown to be critical for both inhibition strength and specificity. Also, detailed analysis of the interaction interfaces of the complexes illustrates that the inhibition strength of TAXI is related to the presence of an aspartate or asparagine residue adjacent to the acid ⁄ base catalyst of the xylanase, and therefore to the pH optimum of the xylanase. The lower the pH optimum of the xylanase, the stronger will be the interaction between enzyme and inhibitor, and the stronger the resulting inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.