Chlorosomes are the largest and most efficient light-harvesting antennae found in nature, and they are constructed from hundreds of thousands of self-assembled bacteriochlorophyll (BChl) c, d, or e pigments. Because they form very large and compositionally heterogeneous organelles, they had been the only photosynthetic antenna system for which no detailed structural information was available. In our approach, the structure of a member of the chlorosome class was determined and compared with the wild type (WT) to resolve how the biological light-harvesting function of the chlorosome is established. By constructing a triple mutant, the heterogeneous BChl c pigment composition of chlorosomes of the green sulfur bacteria Chlorobaculum tepidum was simplified to nearly homogeneous BChl d. Computational integration of two different bioimaging techniques, solid-state NMR and cryoEM, revealed an undescribed syn-anti stacking mode and showed how ligated BChl c and d self-assemble into coaxial cylinders to form tubular-shaped elements. A close packing of BChls via pi-pi stacking and helical H-bonding networks present in both the mutant and in the WT forms the basis for ultrafast, long-distance transmission of excitation energy. The structural framework is robust and can accommodate extensive chemical heterogeneity in the BChl side chains for adaptive optimization of the light-harvesting functionality in low-light environments. In addition, syn-anti BChl stacks form sheets that allow for strong exciton overlap in two dimensions enabling triplet exciton formation for efficient photoprotection.
Pentacene crystallizes in a layered structure with a herringbone arrangement within the layers. The electronic properties depend strongly on the stacking of the molecules within the layers [J. Phys. Chem. B. 106 (2002) . Single crystals commonly adopt the 14.1 A structure, whereas all four polymorphs can be synthesized in thin film form, depending on growth conditions. We have identified part of the unit cell parameters of these polymorphs by X-ray and electron diffraction (ED). The 15.0 and 15.4 A polymorphs transform at elevated temperature to the 14.1 and 14.4 A polymorphs, respectively. Using SCLC measurements, we determined the mobility of the 14.1 A polymorph to be 0.2 cm 2 /V s at room temperature. #
Coronaviruses are enveloped viruses containing the largest reported RNA genomes. As a result of their pleomorphic nature, our structural insight into the coronavirion is still rudimentary, and it is based mainly on 2D electron microscopy. Here we report the 3D virion structure of coronaviruses obtained by cryo-electron tomography. Our study focused primarily on the coronavirus prototype murine hepatitis virus (MHV). MHV particles have a distinctly spherical shape and a relatively homogenous size (Ϸ85 nm envelope diameter). The viral envelope exhibits an unusual thickness (7.8 ؎ 0.7 nm), almost twice that of a typical biological membrane. Focal pairs revealed the existence of an extra internal layer, most likely formed by the C-terminal domains of the major envelope protein M. In the interior of the particles, coiled structures and tubular shapes are observed, consistent with a helical nucleocapsid model. Our reconstructions provide no evidence of a shelled core. Instead, the ribonucleoprotein seems to be extensively folded onto itself, assuming a compact structure that tends to closely follow the envelope at a distance of Ϸ4 nm. Focal contact points and thread-like densities connecting the envelope and the ribonucleoprotein are revealed in the tomograms. Transmissible gastroenteritis coronavirion tomograms confirm all the general features and global architecture observed for MHV. We propose a general model for the structure of the coronavirion in which our own and published observations are combined.coronaviruses ͉ enveloped viruses ͉ plus-stranded RNA viruses ͉ transmissible gastroenteritis coronavirus
The lipid scramblase TMEM16F initiates blood coagulation by catalyzing the exposure of phosphatidylserine in platelets. The protein is part of a family of membrane proteins, which encompasses calcium-activated channels for ions and lipids. Here, we reveal features of murine TMEM16F (mTMEM16F) that underlie its function as a lipid scramblase and an ion channel. The cryo-EM data of mTMEM16F in absence and presence of Ca2+ define the ligand-free closed conformation of the protein and the structure of a Ca2+-bound intermediate. Both conformations resemble their counterparts of the scrambling-incompetent anion channel mTMEM16A, yet with distinct differences in the region of ion and lipid permeation. In conjunction with functional data, we demonstrate the relationship between ion conduction and lipid scrambling. Although activated by a common mechanism, both functions appear to be mediated by alternate protein conformations that are at equilibrium in the ligand-bound state.
Three phyla of bacteria include phototrophs that contain unique antenna systems, chlorosomes, as the principal light-harvesting apparatus. Chlorosomes are the largest known supramolecular antenna systems and contain hundreds of thousands of BChl c/d/e molecules enclosed by a single membrane leaflet and a baseplate. The BChl pigments are organized via self-assembly and do not require proteins to provide a scaffold for efficient light harvesting. Their excitation energy flows via a small protein, CsmA embedded in the baseplate to the photosynthetic reaction centres. Chlorosomes allow for photosynthesis at very low light intensities by ultra-rapid transfer of excitations to reaction centres and enable organisms with chlorosomes to live at extraordinarily low light intensities under which no other phototrophic organisms can grow. This article reviews several aspects of chlorosomes: the supramolecular and molecular organizations and the light-harvesting and spectroscopic properties. In addition, it provides some novel information about the organization of the baseplate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.