BACKGROUND In this work the possibility of using membrane cascades to carry out difficult pharmaceutical separations was explored. The effect of configuration on process yield, time and cost was studied for a challenging industrial separation: the separation of an intermediate I (MW 221 g mol−1) from an impurity, ethylene bromide (MW 188 g mol−1). RESULTS All cascade configurations studied were capable of increasing the purity from a fairly low value, namely 26% to the 90% requirement. The results from the cascade modeling showed that the product yield effectively increased from 35.5% to 84.3% by adding two stages. From a cost analysis of a kilo scale plant it was derived that a two‐stage cascade with large area modules yielded the smallest total cost of € 515 082. A 7.0% decrease in cost of product loss or a 7.6% increase in membrane skid cost rendered a single stage economically optimal despite the low product yields. However, if at least six other separations with a comparable process time are carried out each year, then even three stages become economically optimal. CONCLUSION High resolution separations are technically feasible with membrane cascades. The economic viability of membrane cascades increases dramatically with the cost of the product and the utilization of the equipment. Copyright © 2012 Society of Chemical Industry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.