A dietary potassium load induces a rapid kaliuresis and natriuresis, which may occur even before plasma potassium and aldosterone (aldo) levels increase. Here we sought to gain insight into underlying molecular mechanisms contributing to this response. After gastric gavage of 2% potassium, the plasma potassium concentrations rose rapidly (0.25 h), followed by a significant rise of plasma aldo (0.5 h) in mice. Enhanced urinary potassium and sodium excretion was detectable as early as spot urines could be collected (about 0.5 h). The functional changes were accompanied by a rapid and sustained (0.25-6 h) dephosphorylation of the NaCl cotransporter (NCC) and a late (6 h) upregulation of proteolytically activated epithelial sodium channels. The rapid effects on NCC were independent from the coadministered anion. NCC dephosphorylation was also aldo-independent, as indicated by experiments in aldo-deficient mice. The observed urinary sodium loss relates to NCC, as it was markedly diminished in NCC-deficient mice. Thus, downregulation of NCC likely explains the natriuretic effect of an acute oral potassium load in mice. This may improve renal potassium excretion by increasing the amount of intraluminal sodium that can be exchanged against potassium in the aldo-sensitive distal nephron.
Accumulation of abnormally phosphorylated TDP-43 (pTDP-43) is the main pathology in affected neurons of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Morphological diversity and neuroanatomical distribution of pTDP-43 accumulations allowed classification of FTD cases into at least four different subtypes, which correlate with clinical presentations and genetic causes. To understand the molecular basis of this heterogeneity, we developed SarkoSpin, a new method for extremely pure biochemical isolation of pathological TDP-43. Combining SarkoSpin with mass spectrometry, we revealed proteins beyond TDP-43, which become abnormally insoluble in a disease subtype-specific manner. We show that pTDP-43 extracted from disease brain forms large and stable assemblies of distinct densities and morphologies that correlate with disease subtypes. Importantly, biochemically extracted pTDP-43 assemblies displayed differential neurotoxicity and seeding that correlated with disease duration of FTLD patients. Our data indicate that disease heterogeneity may originate from alternate pathological TDP-43 conformations, reminiscent of prion strains. 5 developed SarkoSpin, a novel and simple extraction method for physical separation of pathological TDP-43 from more than 99% of total protein mass including the extreme bulk of physiological, monomeric and oligomeric 11 TDP-43. Using SarkoSpin on brain cortical samples from over 80 patients, we found that TDP-43 forms large and buoyant assemblies of distinct densities, polyubiquitination levels and morphologies that correlate with specific neuropathological classifications. Importantly, coupling SarkoSpin with mass spectrometry, we illustrate that a specific subset of proteins, beyond TDP-43, become insoluble in each disease subtype. These proteins are rarely co-aggregated with pTDP-43 and most likely represent a downstream effect of TDP-43 pathology. One of these proteins depicts a distinct astrocytic reaction discriminating FTLD-TDP-A from FTLD-TDP-C patients, illustrating divergent pathogenic mechanisms within these two disease subtypes. Most importantly, we show evidence that SarkoSpin extracted pTDP-43 assemblies exhibit cytotoxicity and protein seeding ability. Remarkably, pathological aggregates extracted from FTLD-TDP-A were significantly more cyto-and neurotoxic than those extracted from FTLD-TDP-C, thereby correlating with the significant difference in disease duration between these two subtypes. Collectively, our data demonstrate that ALS and FTLD heterogeneity is consistently reflected in the biochemical, neurotoxic and seeding properties of TDP-43 and the associated insoluble proteome. We propose that alternative TDP-43 pathological conformations may underlie the diversity of TDP-43 proteinopathies, reminiscent of prion strains 33,34. Results Summary of patient cohort and characterization of FTLD-TDP-A and FTLD-TDP-C cases Brain cortical samples from over 80 patients, including control patients with no apparent CNS pathology or with non-TDP...
Ciliopathies are human disorders caused by dysfunction of primary cilia, ubiquitous organelles involved in transduction of environmental signals such as light sensation in photoreceptors. Concentration of signal detection proteins such as opsins in the ciliary membrane is achieved by RabGTPase-regulated polarized vesicle trafficking and by a selective barrier at the ciliary base, the transition zone (TZ). Dysfunction of the TZ protein CC2D2A causes Joubert/Meckel syndromes in humans and loss of ciliary protein localization in animal models, including opsins in retinal photoreceptors. The link between the TZ and upstream vesicle trafficking has been little explored to date. Moreover, the role of the small GTPase Rab8 in opsin-carrier vesicle (OCV) trafficking has been recently questioned in a mouse model. Using correlative light and electron microscopy and live imaging in zebrafish photoreceptors, we provide the first live characterization of Rab8-mediated trafficking in photoreceptors in vivo. Our results support a possibly redundant role for both Rab8a/b paralogs in OCV trafficking, based on co-localization of Rab8 and opsins in vesicular structures, and joint movement of Rab8-tagged particles with opsin. We further investigate the role of the TZ protein Cc2d2a in Rab8-mediated trafficking using cc2d2a zebrafish mutants and identify a requirement for Cc2d2a in the latest step of OCV trafficking, namely vesicle fusion. Progressive accumulation of opsin-containing vesicles in the apical portion of photoreceptors lacking Cc2d2a is caused by disorganization of the vesicle fusion machinery at the periciliary membrane with mislocalization and loss of the t-SNAREs SNAP25 and Syntaxin3 and of the exocyst component Exoc4. We further observe secondary defects on upstream Rab8-trafficking with cytoplasmic accumulation of Rab8. Taken together, our results support participation of Rab8 in OCV trafficking and identify a novel role for the TZ protein Cc2d2a in fusion of incoming ciliary-directed vesicles, through organization of the vesicle fusion machinery at the periciliary membrane.
Fluorescence microscopy reveals molecular expression at nanometer resolution but lacks ultrastructural context information. This deficit often hinders a clear interpretation of results. Electron microscopy provides this contextual subcellular detail, but protein identification can often be problematic. Correlative light and electron microscopy produces complimentary information that expands our knowledge of protein expression in cells and tissue. Inherent methodological difficulties are however encountered when combining these two very different microscopy technologies. We present a quick, simple and reproducible method for protein localization by conventional and super-resolution light microscopy combined with platinum shadowing and scanning electron microscopy to obtain topographic contrast from the surface of ultrathin cryo-sections. We demonstrate protein distribution at nuclear pores and at mitochondrial and plasma membranes in the extended topographical landscape of tissue.
Epithelial cells lining the proximal tubule of the kidney reabsorb and metabolize most of the filtered lowmolecular-weight proteins through receptor-mediated endocytosis and lysosomal processing. Congenital and acquired dysfunctions of the proximal tubule are consistently reflected by the inappropriate loss of solutes including low-molecular-weight proteins in the urine. The zebrafish pronephros shares individual functional segments with the human nephron, including lrp2a/ megalin-dependent endocytic transport processes of the proximal tubule. Although the zebrafish has been used as a model organism for toxicological studies and drug discovery, there is no available assay that allows large-scale assessment of proximal tubule function in larval or adult stages. Here we establish a transgenic Tg(lfabp:: 1 / 2 vdbp-mCherry) zebrafish line expressing in the liver the Nterminal region of vitamin D-binding protein coupled to the acid-insensitive, red monomeric fluorescent protein mCherry (1 / 2 vdbp-mCherry). This low-molecular-weight protein construct is secreted into the bloodstream, filtered through the glomerulus, reabsorbed by receptor-mediated endocytosis and processed in the lysosomes of proximal tubule cells of the fish. Thus, our proof-of-concept studies using zebrafish larvae knockout for lrp2a and clcn7 or exposed to known nephrotoxins (gentamicin and cisplatin) demonstrate that this transgenic line is useful to monitor low-molecular-weight proteinuria and lysosomal processing. This represents a powerful new model organism for drug screening and studies of nephrotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.