16The Namibian continental margin marks the starting point of the Tristan da Cunha 17 hotspot trail, the Walvis Ridge. This section of the volcanic southwestern African 18 margin is therefore ideal to study the interaction of hotspot volcanism and rifting, 19 which occurred in the late Jurassic/early Cretaceous. Offshore magnetotelluric data 20 image electromagnetically the landfall of Walvis Ridge. Two large-scale high 21 resistivity anomalies in the 3-D resistivity model indicate old magmatic intrusions 22 related to hot-spot volcanism and rifting. The large-scale resistivity anomalies 23 correlate with seismically identified lower crustal high velocity anomalies attributed 24 to magmatic underplating along 2-D offshore seismic profiles. One of the high 25 resistivity anomalies (above 500 Ωm) has three arms of approximately 100 km width 26 and 300 km to 400 km length at 120 degree angles in the lower crust. One of the arms 27 stretches underneath Walvis Ridge. The shape is suggestive of crustal extension due 28 to local uplift. It might indicate the location where the hot-spot impinged on the crust 29 prior to rifting. A second, smaller anomaly of 50 km width underneath the continent 30 ocean boundary may be attributed to magma ascent during rifting. We attribute a low 31 resistivity anomaly east of the continent ocean boundary and south of Walvis Ridge to 32
imaging of rift related volcanic processes at the Namibian margin through joint analysis of magnetotelluric, gravity and seismic data 3D inversion of marine magnetotelluric data is improved by cross-gradient coupling with fixed structural density modelESSOAr |
SO277 OMAX served two scientific projects. The objectives of the first project, SMART, were to develop multi-disciplinary methodologies to detect, quantify, and model offshore groundwater reservoirs in regions dominated by carbonate geology such as the Mediterranean Sea. To this end we acquired controlled-source electromagnetic, seismic, hydroacoustic, geochemical, seafloor imagery data off Malta. Preliminary evaluation of the geophysical data show that there are resisitivity anomalies that may represent offshore freshwater aquifers. The absence of evidence for offshore springs means that these aquifers would be confined and that it will be difficult to use them in a sustainable manner. The objective of the second project, MAPACT-ETNA, is to monitor the flank of Etna volcano on Sicily which is slowly deforming seaward. Here, we deployed six seafloor geodesy stations and six ocean bottom seismometers for long-term observation (1-3 years). In addition, we mapped the seafloor off Mt. Etna and off the island of Stromboli to constrain the geological processes that control volcanic flank stability.
<p>In the marine environment, active and passive electromagnetic (EM) measurements are used to derive information about the conductivity structure beneath the seafloor. While the conductivity is mostly determined by the conductive seawater contained in the pore space or fractures, anomalies may occur in the presence of more resistive (e.g. hydrocarbons, free gas, gas hydrates, freshened water) or conductive materials (e.g. massive sulfides, brines). For the correct interpretation of EM data it is important to know the measurement geometry, including the orientations of receivers. From an experimental standpoint, this can be challenging because stations are often deployed free falling, thus, ending up in arbitrary orientations on the seafloor. The orientations are frequently derived from electronic compass measurements or magnetometers which record all components of the magnetic field. However, these measurements may be distorted by magnetic parts on stations (e.g. batteries), biased by local inhomogeneities in the local field or difficult to perform if no reliable reference data from a nearby observatory is available.</p> <p>A possible remedy for such problems may come from space physics. Given a grid of stationary magnetometer stations, surrounding the area of interest but at relatively large distances, the method of spherical elementary current systems (SECS) (Amm & Viljanen, 1999, Earth, Plants and Space) can be used to reconstruct equivalent ionospheric currents and their resulting time variations of the magnetic field at any point within the grid. The method is especially suitable to be applied at northern latitudes, where fairly dense magnetometer networks such as IMAGE and CARISMA exist, and where the magnitude of geomagnetic disturbances from ionospheric currents is significant.</p> <p>We have successfully applied the method to three marine EM data sets, one offshore Iceland, one in the arctic section of the North Atlantic (Loki's Castle) and one off the Canadian coast (Prince Edward Island). The SECS method qualitatively reproduces the magnetic variation as observed by the seafloor stations. Here we investigate the results from the above mentioned EM data sets, and discuss the applicability, accuracy and constraints of the SECS method for EM data calibrations. Furthermore, we illuminate the possibility for using SECS as an interpolation tool for other applications at remote offshore locations, such as measurement while drilling (MWD) operations.</p>
Abstract. When interpreting geophysical models, we need to establish a link between the models' physical parameters and geological units. To define these connections, it is crucial to consider and compare geophysical models with multiple, independent parameters. Particularly in complex geological scenarios, such as the rifted passive margin offshore Namibia, multi-parameter analysis and joint inversion are key techniques for comprehensive geological inferences. The models resulting from joint inversion enable the definition of specific parameter combinations, which can then be ascribed to geological units. Here we perform a user-unbiased clustering analysis of the two parameters electrical resistivity and density from two models derived in a joint inversion along the Namibian passive margin. We link the resulting parameter combinations to breakup-related lithology and infer the history of margin formation. This analysis enables us to clearly differentiate two types of sediment cover. The first type of sediment cover occurs near the shore and consists of thick, clastic sediments, while the second type of sediment cover occurs further offshore and consists of more biogenic, marine sediments. Furthermore, we clearly identify areas of interlayered massive, and weathered volcanic flows, which are usually only identified in reflection seismic studies as seaward-dipping reflectors. Lastly, we find a distinct difference in the signature of the transitional crust south of and along the supposed hotspot track Walvis Ridge. We ascribe this contrast to an increase in magmatic activity above the volcanic centre along Walvis Ridge and potentially a change in the melt sources or depth of melting. This change of the predominant volcanic signature characterizes a rift-related southern complex and a plume-driven Walvis Ridge regime. All of these observations demonstrate the importance of multi-parameter geophysical analysis for large-scale geological interpretations. Additionally, our results may improve future joint inversions using direct parameter coupling, by providing a guideline for the complex passive margin's parameter correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.