Assessing the quality of sensor data in environmental monitoring applications is important, as erroneous readings produced by malfunctioning sensors, calibration drift, and problematic climatic conditions, such as icing or dust, are common.Traditional data quality checking and correction is a painstaking manual process, so the development of automatic systems for this task is highly desirable. This study investigates machine learning methods to identify and clean incorrect data from a real-world environmental sensor network, the Jornada Experimental Range, located in Southern New Mexico. We evaluated several learning algorithms and data replacement schemes, and developed a method to identify the problematic sensor. The evidence found and its analysis allowed us to conclude that learning algorithms are an effective way of cleansing these types of datasets and identifying noisy sensors. vii
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.