Background: Strategies that involve manipulations of the odour-orientation of gravid malaria vectors could lead to novel attract-and-kill interventions. Recent work has highlighted the potential involvement of graminoid plants in luring vectors to oviposition sites. This study aimed to analyse the association between water-indicating graminoid plants (Cyperaceae, sedges), other abiotic and biotic factors and the presence and abundance of early instar Anopheles larvae in aquatic habitats as a proxy indicator for oviposition. Methods: A cross-sectional survey of 110 aquatic habitats along the shores of Lake Victoria was done during the rainy season. Habitats were sampled for mosquito larvae using the sweep-net method and habitat characteristics recorded. Results: Anopheles arabiensis was the dominant species identified from aquatic habitats. Larvae of the secondary malaria vectors such as Anopheles coustani, An. rufipes and An. maculipalpis were found only in habitats covered with graminoids, whereas An. arabiensis, An. ziemanni and An. pharoensis were found in both habitats with and without graminoid plants. The hypothesis that sedges might be positively associated with the presence and abundance of early instar Anopheles larvae could not be confirmed. The dominant graminoid plants in the habitats were Panicum repens, Cynodon dactylon in the Poaceae family and Cyperus rotundus in the Cyperaceae family. All of these habitats supported abundant immature vector populations. The presence of early instar larvae was significantly and positively associated with swamp habitat types (OR=22, 95% CI=6-86, P<0.001) and abundance of late Anopheles larvae (OR=359, CI=33-3941, P<0.001), and negatively associated with the presence of tadpoles (OR=0.1, CI=0.0.01-0.5, P=0.008). Conclusions: Early instar malaria vectors were abundant in habitats densely vegetated with graminoid plants in the study area but no specific preference could be detected for any species or family. In search for oviposition cues, it might be useful to screen for chemical volatiles released from all dominant plant species.
Background Understanding the ecology and behaviour of disease vectors, including the olfactory cues used to orient and select hosts and egg-laying sites, are essential for the development of novel, insecticide-free control tools. Selected graminoid plants have been shown to release volatile chemicals attracting malaria vectors; however, whether the attraction is selective to individual plants or more general across genera and families is still unclear. Methods To contribute to the current evidence, we implemented bioassays in two-port airflow olfactometers and in large field cages with four live graminoid plant species commonly found associated with malaria vector breeding sites in western Kenya: Cyperus rotundus and C. exaltatus of the Cyperaceae family, and Panicum repens and Cynodon dactylon of the Poaceae family. Additionally, we tested one Poaceae species, Cenchrus setaceus, not usually associated with water. The volatile compounds released in the headspace of the plants were identified using gas chromatography/mass spectrometry. Results All five plants attracted gravid vectors, with the odds of a mosquito orienting towards the choice-chamber with the plant in an olfactometer being 2–5 times higher than when no plant was present. This attraction was maintained when tested with free-flying mosquitoes over a longer distance in large field cages, though at lower strength, with the odds of attracting a female 1.5–2.5 times higher when live plants were present than when only water was present in the trap. Cyperus rotundus, previously implicated in connection with an oviposition attractant, consistently elicited the strongest response from gravid vectors. Volatiles regularly detected were limonene, β-pinene, β-elemene and β-caryophyllene, among other common plant compounds previously described in association with odour-orientation of gravid and unfed malaria vectors. Conclusions The present study confirms that gravid Anopheles gambiae sensu stricto use chemical cues released from graminoid plants to orientate. These cues are released from a variety of graminoid plant species in both the Cyperaceae and Poaceae family. Given the general nature of these cues, it appears unlikely that they are exclusively used for the location of suitable oviposition sites. The utilization of these chemical cues for attract-and-kill trapping strategies must be explored under natural conditions to investigate their efficiency when in competition with complex interacting natural cues. Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.