Featured Application: This work can be applied to track mobile users, manage indoor navigations, provide alarms in secured areas, such as unacceptable hospital areas, military systems and mass rapid transit (MRT) inside enclosed areas. In general, this work is applicable to inside enclosed areas where the specific location is mandatory.Abstract: In the Internet of Things (IoT) era, indoor localization plays a vital role in academia and industry. Wi-Fi is a promising scheme for indoor localization as it is easy and free of charge, even for private networks. However, Wi-Fi has signal fluctuation problems because of dynamic changes of environments and shadowing effects. In this paper, we propose to use a deep neural network (DNN) to achieve accurate localization in Wi-Fi environments. In the localization process, we primarily construct a database having all reachable received signal strengths (RSSs), and basic service set identifiers (BSSIDs). Secondly, we fill the missed RSS values using regression, and then apply linear discriminant analysis (LDA) to reduce features. Thirdly, the 5-BSSIDs having the strongest RSS values are appended with reduced RSS vector. Finally, a DNN is applied for localizing Wi-Fi users. The proposed system is evaluated in the classification and regression schemes using the python programming language. The results show that 99.15% of the localization accuracy is correctly classified. Moreover, the coordinate-based localization provides 50%, 75%, and 93.10% accuracies for errors less than 0.50 m, 0.75 m, and 0.90 m respectively. The proposed method is compared with other algorithms, and our method provides motivated results. The simulation results also show that the proposed method can robustly localize Wi-Fi users in hierarchical and complex wireless environments.
Indoor and outdoor positioning lets to offer universal location services in industry and academia. Wi-Fi and Global Positioning System (GPS) are the promising technologies for indoor and outdoor positioning, respectively. However, Wi-Fi-based positioning is less accurate due to the vigorous changes of environments and shadowing effects. GPS-based positioning is also characterized by much cost, highly susceptible to the physical layouts of equipment, power-hungry, and sensitive to occlusion. In this paper, we propose a hybrid of support vector machine (SVM) and deep neural network (DNN) to develop scalable and accurate positioning in Wi-Fi-based indoor and outdoor environments. In the positioning processes, we primarily construct real datasets from indoor and outdoor Wi-Fi-based environments. Secondly, we apply linear discriminate analysis (LDA) to construct a projected vector that uses to reduce features without affecting information contents. Thirdly, we construct a model for positioning through the integration of SVM and DNN. Fourthly, we use online datasets from unknown locations and check the missed radio signal strength (RSS) values using the feed-forward neural network (FFNN) algorithm to fill the missed values. Fifthly, we project the online data through an LDA-based projected vector. Finally, we test the positioning accuracies and scalabilities of a model created from a hybrid of SVM and DNN. The whole processes are implemented using Python 3.6 programming language in the TensorFlow framework. The proposed method provides accurate and scalable positioning services in different scenarios. The results also show that our proposed approach can provide scalable positioning, and 100% of the estimation accuracies are with errors less than 1 m and 1.9 m for indoor and outdoor positioning, respectively.
The resource management in wireless networks with massive Internet of Things (IoT) users is one of the most crucial issues for the advancement of fifth-generation networks. The main objective of this study is to optimize the usage of resources for IoT networks. Firstly, the unmanned aerial vehicle is considered to be a base station for air-to-ground communications. Secondly, according to the distribution and fluctuation of signals; the IoT devices are categorized into urban and suburban clusters. This clustering helps to manage the environment easily. Thirdly, real data collection and preprocessing tasks are carried out. Fourthly, the deep reinforcement learning approach is proposed as a main system development scheme for resource management. Fifthly, K-means and round-robin scheduling algorithms are applied for clustering and managing the users' resource requests, respectively. Then, the TensorFlow (python) programming tool is used to test the overall capability of the proposed method. Finally, this paper evaluates the proposed approach with related works based on different scenarios. According to the experimental findings, our proposed scheme shows promising outcomes. Moreover, on the evaluation tasks, the outcomes show rapid convergence, suitable for heterogeneous IoT networks, and low complexity.
The use of unmanned aerial vehicles (UAVs) as a communication platform has great practical importance for future wireless networks, especially for on-demand deployment for temporary and emergency conditions. The user throughput estimation in a wireless system depends on the data traffic load and the available capacity to support that load. In UAV-assisted communication, the position of the UAV is one major factor that affects the capacity available to the data flows being served. This study applies multi-layer perceptron (MLP) and long short term memory (LSTM) approaches to determine the position of a UAV that maximizes the overall system performance and user throughput. To analyze and evaluate the system performance, we apply the hybrid of MLP-LSTM for classification regression tasks and K-means algorithms for automatic clustering of classes. The implementation of our work is done through TensorFlow packages. The performance of our proposed system is compared with other approaches to give accurate and novel results for both classification and regression tasks of the user throughput maximization and UAV positioning. According to the results, 98% of the user throughput maximization accuracy is correctly classified. Moreover, the UAV positioning provides accuracy levels of 94.73%, 98.33%, and 99.53% for original datasets (scenario 1), reduced features on the estimated values of user throughput at each grid point (scenario 2), and reduced feature datasets collected on different days and grid points achieved maximum throughput (scenario 3), respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.