This study was performed to investigate the effects of high pressure/high temperature (HPHT) treatment on the recovery efficiency and characteristics of porcine placenta hydrolysates. The placenta hydrolysates were characterized by solubility, free amino acid contents, gel electrophoresis, gel permeation chromatography (GPC) and amino acid composition. Placenta was treated at 37.5 MPa of pressure combined with various temperatures (150, 170, and 200 o C) or various holding times (0, 30, and 60 min at 170 o C). Insoluble raw placenta collagen was partially solubilized (> 60% solubility) by the HPHT treatment. Free amino group content of placenta collagen was increased from 0.1 mM/g collagen to > 0.3 mM/g collagen after HPHT treatment, reflecting partial hydrolysis of collagen. The molecular weight (M w ) distribution showed evidence of collagen hydrolysis by shifting of M w peaks toward low molecular weight when treated temperature or holding time was increased. Alanine (Ala), glycine (Gly), hydroxyproline (Hyp), and proline (Pro) contents increased after the HPHT treatments compared to a decrease in the others. In particular, the increase in Gly was obvious, followed by Hyp and Pro, reflecting that placenta hydrolysates were mainly composed of these amino acids. However, increasing temperature or holding time hardly affected the amino acid compositions. These results indicate that the HPHT treatment is advantageous to hydrolyze collagen derived from animal by-products.
This study investigated the effects of three proteases (trypsin, pepsin and chymotrypsin) on the hydrolysis efficiency of porcine placenta and the molecular weight (Mw) distributions of the placental hydrolysates. Because placenta was made up of insoluble collagen, the placenta was gelatinized by applying thermal treatment at 90 ℃ for 1 h and used as the sample. The placental hydrolyzing activities of the enzymes at varying concentrations and incubation times were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel permeation chromatography (GPC). Based on the SDS-PAGE, the best placental hydrolysis efficiency was observed in trypsin treatments where all peptide bands disappeared after 1 h of incubation as compared to 6 h of chymotrypsin. Pepsin hardly hydrolyzed the placenta as compared to the other two enzymes. The Mw distribution revealed that the trypsin produced placental peptides with Mw of 106 and 500 Da. Peptides produced by chymotrypsin exhibited broad ranges of Mw distribution (1-20 kDa), while the pepsin treatment showed Mw greater than 7 kDa. For comparisons of pre-treatments, the subcritical water processing (37.5 MPa and 200 ℃ of raw placenta improved the efficiency of tryptic digestions to a greater level than that of a preheating treatment (90 ℃ for 1 h). Consequently, subcritical water processing followed by enzymatic digestions has the potential of an advanced collagen hydrolysis technique.
In this study, the effects of physical parameters (30-270 MPa of pressure, 3-57 min of time, and 1-49 o C of temperature) on pork quality were investigated. Response surface methodology was used in order to monitor and model the changes in pork quality under varied pressure conditions. As quality characteristics, shear force, water holding capacity (WHC) and the CIE color of pork were measured, and optimum pressure conditions were evaluated by statistical modeling. Pressure improved the WHC of pork at relatively low temperature (<25 o C); however, the opposite occurred with increasing temperature. Although pressure and temperature affected the tenderness of the meat, interaction effects among variations were not observed. At pressure levels higher than 200 MPa, the color of pork differed markedly from that of the untreated controls. In particular, differential scanning calorimetry (DSC) revealed marked evidence of myosin denaturation. The present study demonstrates that pork quality varies depending on pressure conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.