Background: Porcine islet xenotransplantation is considered an attractive alternative treatment for type 1 diabetes mellitus. However, it is largely limited because of initial rejection due to Instant Blood-Mediated Inflammatory Reaction (IBMIR), oxidative stress, and inflammatory responses. Recently, soluble tumor necrosis factor-ɑ receptor type I (sTNF-αR) and heme oxygenase (HO)-1 genes (HO-1/sTNF-αR) have been shown to improve the viability and functionality of porcine islets after transplantation. Methods:In this study, genetically modified mesenchymal stem cells (MSCs) expressing the HO-1/sTNF-αR genes (HO-1/sTNF-αR-MSC) were developed using an adenoviral system, and porcine islet viability and function were confirmed by in vitro tests such as GSIS, AO/PI, and the ADP/ATP ratio after coculturing with HO-1/sTNF-αR-MSCs. Subsequently, isolated porcine islets were transplanted underneath the kidney capsule of diabetic humanized mice without MSCs, with MSCs or with HO-1/sTNF-αR-MSCs.Results: According to the results, the HO-1/sTNF-αR-MSC-treated group exhibited improved survival of porcine islets and could reverse hyperglycemia more than porcine islets not treated with MSCs or islets cotransplanted with MSCs. Moreover, the HO-1/sTNF-αR-MSC group maintained its morphological characteristics and the insulin secretion pattern of transplanted porcine islets similar to endogenous islets in immunocompetent humanized mice. Conclusions:Our results suggest that HO-1/sTNF-αR-MSCs are efficient tools for porcine islet xenotransplantation, and this study may provide basic information for pre-clinical animal models and future clinical trials of porcine islet xenotransplantation. K E Y W O R D Sheme oxygenase-1, islet, mesenchymal stromal cell, TNF-αR-Fc, xeno-transplantation
The most obvious method to observe transplanted islets in the liver is direct biopsy, but the distribution and location of the best biopsy site in the recipient's liver are poorly understood. islets transplanted into the whole liver of five diabetic cynomolgus monkeys that underwent insulin-independent survival for an extended period of time after allo-islet transplantation were analyzed for characteristics and distribution tendency. The liver was divided into segments (S1-S8), and immunohistochemistry analysis was performed to estimate the diameter, beta cell area, and islet location. Islets were more distributed in S2 depending on tissue size; however, the number of islets per tissue size was high in S1 and S8. Statistical analysis revealed that the characteristics of islets in S1 and S8 were relatively similar to other segments despite various transplanted islet dosages and survival times. In conclusion, S1, which exhibited high islet density and reflected the overall characteristics of transplanted islets, can be considered to be a reasonable candidate for a liver biopsy site in this monkey model. The findings obtained from the five monkey livers with similar anatomical features to human liver can be used as a reference for monitoring transplanted islets after clinical islet transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.