BackgroundThe elevated production of interleukin (IL)–8 is critically associated with invasiveness and metastatic potential in breast cancer cells. However, the intracellular signaling pathway responsible for up-regulation of IL-8 production in breast cancer cells has remained unclear.Methodology/Principal FindingsIn this study, we report that the expression of BLT2 is markedly up-regulated in the highly aggressive human breast cancer cell lines MDA-MB-231 and MDA-MB-435 compared with MCF-10A immortalized human mammary epithelial cells, as determined by RT-PCR, real-time PCR and FACS analysis. Blockade of BLT2 with BLT2 siRNA knockdown or BLT2 inhibitor treatment downregulated IL-8 production and thereby diminished the invasiveness of aggressive breast cancer cells, analyzed by Matrigel invasion chamber assays. We further characterized the downstream signaling mechanism by which BLT2 stimulates IL-8 production and identified critical mediatory roles for the generation of reactive oxygen species (ROS) and the consequent activation of the transcription factor NF-κB. Moreover, blockade of BLT2 suppressed the formation of metastatic lung nodules by MDA-MB-231 cells in both experimental and orthotopic metastasis models.Conclusions/SignificanceTaken together, our study demonstrates that a BLT2–ROS–NF-κB pathway up-regulates IL-8 production in MDA-MB-231 and MDA-MB-435 cells, thereby contributing to the invasiveness of these aggressive breast cancer cells. Our findings provide insight into the molecular mechanism of invasiveness in breast cancer.
Monocytes are the major inflammatory cells that infiltrate most solid tumors in humans. The interaction of tumor cells with infiltrating monocytes and their adhesion to these monocytes play a significant role in altering the tumor to become more aggressive. Recently, exposure to lipopolysaccharide (LPS) was suggested to promote cancer cell adhesion to monocytes; however, little is known about the details of the signaling mechanism involved in this process. In this study, we found that LPS up-regulates ICAM-1 expression in MDA-MB-231 breast cancer cells, which facilitates their adhesion to THP-1 monocytes. In addition, we analyzed the signaling mechanism underlying the up-regulation of ICAM-1 and found that the siRNA-mediated depletion of BLT2 markedly suppressed the LPS-induced expression of ICAM-1 in MDA-MB-231 cells and the subsequent adhesion of these cells to THP-1 monocytes. Moreover, we demonstrated that myeloid differentiation primary response gene 88 (MyD88) lies downstream of LPS/TLR4 and upstream of BLT2 and that this ‘MyD88-BLT2’ cascade mediates ERK activation and subsequent ICAM-1 expression, which is critical for the adhesion of MDA-MB-231 cells to THP-1 monocytes. Taken together, our results demonstrate for the first time that LPS up-regulates ICAM-1 expression in breast cancer cells via a MyD88-BLT2-ERK-linked signaling cascade, leading to the increased adhesion of breast cancer cells to monocytes.
Inflammation and local inflammatory mediators are inextricably linked to tumor progression through complex pathways in the tumor microenvironment. Lipopolysaccharide (LPS) exposure to tumor cells has been suggested to promote tumor invasiveness and metastasis. However, the detailed signaling mechanism involved has not been elucidated. In this study, we showed that LPS upregulated the expression of leukotriene B4 receptor-2 (BLT2) and the synthesis of BLT2 ligands in MDA-MB-231 and MDA-MB-435 breast cancer cells, thereby promoting invasiveness. BLT2 depletion with siRNA clearly attenuated LPS-induced invasiveness. In addition, we demonstrated that myeloid differentiation primary response gene 88 (MyD88) lies upstream of BLT2 in LPS-potentiated invasiveness and that this ‘MyD88-BLT2’ cascade mediates activation of NF-κB and the synthesis of IL-6 and IL-8, which are critical for the invasiveness and aggression of breast cancer cells. LPS-driven metastasis of MDA-MB-231 cells was also markedly suppressed by the inhibition of BLT2. Together, our results demonstrate, for the first time, that LPS potentiates the invasiveness and metastasis of breast cancer cells via a ‘MyD88-BLT2’-linked signaling cascade.
Triple-negative breast cancer (TNBC) is considered to be a notorious type of cancer due to its aggressive metastatic potential and poor prognosis. Recent evidence suggests that BLT2, a low-affinity LTB4 receptor is critically associated with the phenotypes of TNBC cells, including invasion, metastasis, and survival. Furthermore, in a group of 545 breast cancer patients with metastasis, we observed that the high-BLT2 subgroup had a lower disease-free-survival rate than the low-BLT2 subgroup. Thus, we theorized that anti-BLT2 strategies could facilitate the development of new therapies used for TNBC. This review focuses on recent discoveries regarding BLT2 and its roles in as a novel prognostic biomarker in TNBC.
Mulberry tree twigs (Ramulus mori) contain large amounts of oxyresveratrols and have traditionally been used as herbal medicines because of their anti-inflammatory properties. However, the signaling mechanism by which R. mori exerts its anti-inflammatory action remains to be elucidated. In this study, we observed that R. mori ethanol extracts (RME) exerted an inhibitory effect on the lipopolysaccharide (LPS)-induced production of the pro-inflammatory cytokine interleukin-6 (IL-6) in Raw264.7 macrophage cells. Additionally, RME inhibited IL-6 production by blocking the leukotriene B4 receptor-2 (BLT2)-dependent-NADPH oxidase 1 (NOX1)-reactive oxygen species (ROS) cascade, leading to anti-inflammatory activity. Finally, RME suppressed the production of the BLT2 ligands LTB4 and 12(S)-HETE by inhibiting the p38 kinase-cytosolic phospholipase A2-5-/12-lipoxygenase cascade in LPS-stimulated Raw264.7 cells. Overall, our results suggest that RME inhibits the ‘BLT2 ligand-BLT2’-linked autocrine inflammatory axis, and that this BLT2-linked cascade is one of the targets of the anti-inflammatory action of R. mori. [BMB Reports 2016; 49(4): 232-237]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.