The P2Y(2) receptor, which is activated by UTP, ATP, and dinucleotides, was studied as a prototypical nucleotide-activated GPCR. A combination of receptor mutagenesis, determination of its effects on potency and efficacy of agonists and antagonists, homology modeling, and chemical experiments was applied. R272 (extracellular loop EL3) was found to play a gatekeeper role, presumably responsible for recognition and orientation of the nucleotides. R272 is also directly involved in binding of dinucleotides, which behaved as partial agonists. Y118A (3.37) mutation led to dramatically reduced efficacy of agonists; it is part of the entry channel as well as the triphosphate binding site. While the Y114A (3.33) mutation did not have any effect on agonist activities, the antagonist Reactive Blue 2 (6) was completely inactive at that mutant. The disulfide bridge Cys25-Cys278 was found to be important for agonist potency but neither for agonist efficacy nor for antagonist potency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.