Weld defects such as blowholes and surface pores occur due to zinc vaporization during the gas metal arc welding of lap fillet joints of Zn-coated steel. In this study, the effect of porosity on fatigue behavior was investigated. A Zn-coated steel sheet with the strength of 590 MPa and a thickness of 2.3 mm was used as the base material. Three kinds of specimens with weld pore defects, such as blowholes and surface pores, were prepared and the tensile shear strength, hardness and fatigue behavior were investigated. The pore defects in the welds reduced the tensile shear strength. In the fatigue test, at higher load stresses between 122 and 366 MPa, pore defects reduced the fatigue life of the weld. However, the pore defects in the welds did not significantly affect the fatigue life of the welds at stresses below 92 MPa.
Abstract:In this study, the effect of weld bead shape on the fatigue strength of lap fillet joints using the gas metal arc welding (GMAW) process was investigated. The base material used in the experiment was 590 MPa grade galvanealed steel sheet with 2.3 mm and 2.6 mm thickness. In order to make the four types of weld beads with different shapes by factors such as length, angle, and area, the welding process, wire feeding speed, and joint shape were changed. The stress-number of cycles to failure (S-N) curve and fatigue strength were obtained from the fatigue test for four types of weld bead, and the cause of the fatigue strength difference was clarified through the analysis of the geometrical factors, such as length, angle, and area of the weld bead. In addition, the relationship between weld bead shape and fatigue strength was discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.