We demonstrate that the controlled distribution of nanoparticles can be achieved by employing the spin-coating method. The Co and Ag nanoparticles were uniformly distributed on the Si and SiO2 substrates with this method. The particle density was controllable by varying the concentration of colloids. The spatial distribution of the nanoparticles within the patterned area was also shown to be uniform with small boundary effect, which is favorable for current microelectronics technology. We propose that the spin-coating method can be utilized in developing mass production processes for future nanodevices.
The structural (4 x 1) to (8 x 2) transition and the electronic metal to semimetal transition at the In/Si interface are studied with scanning tunneling microscopy and spectroscopy. Both transitions are gradual, resulting in a complex domain structure in the transition temperature regime. At these intermediate temperatures, the metallic (4 x 1) and semimetallic (8 x 2) domains coexist with each other and with new nanophases. By probing the two intertwined but distinguishable transitions at the atomic level, the interaction between different phases is visualized directly.
The physics of doped Mott insulators is at the heart of some of the most exotic physical phenomena in materials research including insulator-metal transitions, colossal magnetoresistance, and high-temperature superconductivity in layered perovskite compounds. Advances in this field would greatly benefit from the availability of new material systems with a similar richness of physical phenomena but with fewer chemical and structural complications in comparison to oxides. Using scanning tunneling microscopy and spectroscopy, we show that such a system can be realized on a silicon platform. The adsorption of one-third monolayer of Sn atoms on a Si(111) surface produces a triangular surface lattice with half filled dangling bond orbitals. Modulation hole doping of these dangling bonds unveils clear hallmarks of Mott physics, such as spectral weight transfer and the formation of quasiparticle states at the Fermi level, well-defined Fermi contour segments, and a sharp singularity in the density of states. These observations are remarkably similar to those made in complex oxide materials, including high-temperature superconductors, but highly extraordinary within the realm of conventional sp-bonded semiconductor materials. It suggests that exotic quantum matter phases can be realized and engineered on silicon-based materials platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.