The creation of nanostructures with precise chemistries on material surfaces is of importance in a wide variety of areas such as lithography, superhydrophobicity, and cell adhesion. We describe a platform for surface functionalization that involves the fabrication of cylindrical micellar brushes on a silicon wafer through seeded growth of crystallizable block copolymers at the termini of immobilized, surface-confined crystallite seeds. The density, length, and coronal chemistry of the micellar brushes can be precisely tuned, and post-growth decoration with nanoparticles enables applications in catalysis and antibacterial surface modification. The micellar brushes can also be grown on ultrathin two-dimensional materials such as graphene oxide nanosheets and further assembled into a membrane for the separation of oil-in-water emulsions and gold nanoparticles.
Flow reactors are appealing alternatives to conventional batch reactors for heterogeneous catalysis. However, it remains a key challenge to firmly immobilize the catalysts in a facile and flexible manner and to simultaneously maintain a high catalytic efficiency and throughput. Herein, we introduce a dense cylindrical micelle brush support in glass capillary flow reactors through a living crystallization‐driven self‐assembly process initiated by pre‐immobilized short micelle seeds. The active hairy corona of these micellar brushes allows the flexible decoration of a diverse array of nanocatalysts, either through a direct capture process or an in situ growth method. The resulting flow reactors reveal excellent catalytic efficiency for a broad range of frequently utilized transformations, including organic reductions, Suzuki couplings, photolytic degradations, and multistep cascade reactions, and the system was both recyclable and durable. Significantly, this approach is readily applicable to long capillaries, which enables the construction of flow reactors with remarkably higher throughput.
Controlled growth of well-oriented metal-organic framework nanoarrays on requisite surfaces is of prominent significance for a broad range of applications such as catalysis, sensing, optics and electronics. Herein, we develop a highly flexible soft nanobrush-directed synthesis approach for precise in situ fabrication of MOF nanoarrays on diverse substrates. The soft nanobrushes are constructed via surface-initiated living crystallization-driven self-assembly and their active poly(2-vinylpyridine) corona captures abundant metal cations through coordination interactions. This allows the rapid heterogeneous growth of MOF nanoparticles and the subsequent formation of MIL-100 (Fe), HKUST-1 and CUT-8 (Cu) nanoarrays with tailored heights of 220~1100 nm on silicon wafer, Ni foam and ceramic tube. Auxiliary functional components including metal oxygen clusters and precious metal nanoparticles can be readily incorporated to finely fabricate hybrid structures with synergistic features. Remarkably, the MIL-100 (Fe) nanoarrays doped with Keggin H3PMo10V2O40 dramatically boost formaldehyde selectivity up to 92.8% in catalytic oxidation of methanol. Moreover, the HKUST-1 nanoarrays decorated with Pt nanoparticles show exceptional sensitivity to H2S with a ppb-level detection limit.
In this study, molecularly imprinted nanohybrids with "necklace-like" nanostructures were developed based on self-assembled polymeric nanoparticles decorated multiwalled carbon nanotubes (MWCNTs) by employing melamine as template molecules. An amphiphilic copolymer poly(acrylic acid- co-(7-(4-vinylbenzyloxy)-4-methyl coumarin)- co-ethylhexyl acrylate) (poly(AA- co-VMc- co-EHA), PAVE) containing photosensitive coumarin units was synthesized first. Then, the PAVE copolymers were co-assembled with MWCNTs in the presence of template molecules, generating photosensitive molecularly imprinted nanohybrids (MIP-MWCNTs) with necklace-like structures. Subsequently, the MIP-MWCNTs nanohybrids were used to modify electrode surface followed by photo-polymerization of the coumarin units in the nanohybrids, leading to a network architectured complex film. After extracting melamine molecules by electrolysis, a melamine MIP sensor was successfully developed. The as-prepared sensor exhibited a significantly wide linear range (1.0 × 10-1.0 × 10 mol L) and a low detection limit (5.6 × 10 mol L) for melamine detection. High selectivity of the sensor toward melamine was well demonstrated with respect to other melamine analogues and interferents. Furthermore, the MIP sensor showed high stability and reproducibility. The excellent performance of the MIP sensor can be attributed to the unique nanostructure of the complex film provided by these necklace-like nanohybrids. On the one hand, the nanosized polymeric MIP nanoparticles along the MWCNTs increase the effective electrode surface area and thus offer a high melamine-binding capacity. On the other hand, the MWCNTs in MIP-MWCNTs nanohybrids serve as "electronic bridges" to accelerate the electron transfer among the complex MIP film. More importantly, the MIP sensor was practically used to monitor melamine in milk samples, demonstrating a promising feature for applications in the analysis of food like milk and other food products including milk powder, infant formula, and animal feed. Considering the ease of polymeric nanoparticles functionalization, the necklace-like nanohybrids would be extended to wider applications in many other sensors and devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.