BackgroundCost-sharing schemes incorporating modest targeted subsidies have promoted insecticide-treated nets (ITNs) for malaria prevention in the Kilombero Valley, southern Tanzania, since 1996. Here we evaluate resulting changes in bednet coverage and malaria transmission.MethodsBednets were sold through local agents at fixed prices representing a 34% subsidy relative to full delivery cost. A further targeted subsidy of 15% was provided to vulnerable groups through discount vouchers delivered through antenatal clinics and regular immunizations. Continuous entomological surveys (2,376 trap nights) were conducted from October 2001 to September 2003 in 25 randomly-selected population clusters of a demographic surveillance system which monitored net coverage.ResultsMean net usage of 75% (11,982/16,086) across all age groups was achieved but now-obsolete technologies available at the time resulted in low insecticide treatment rates. Malaria transmission remained intense but was substantially reduced: Compared with an exceptionally high historical mean EIR of 1481, even non-users of nets were protected (EIR [fold reduction] = 349 infectious bites per person per year [×4]), while the average resident (244 [×6]), users of typical nets (210 [×7]) and users of insecticidal nets (105 [×14]) enjoyed increasing benefits.ConclusionDespite low net treatment levels, community-level protection was equivalent to the personal protection of an ITN. Greater gains for net users and non-users are predicted if more expensive long-lasting ITN technologies can be similarly promoted with correspondingly augmented subsidies. Cost sharing strategies represent an important option for national programmes lacking adequate financing to fully subsidize comprehensive ITN coverage.
Abstract. We have used a relatively simple but accurate model for predicting the impact of integrated transmission control on the malaria entomologic inoculation rate (EIR) at four endemic sites from across sub-Saharan Africa and the southwest Pacific. The simulated campaign incorporated modestly effective vaccine coverage, bed net use, and larval control. The results indicate that such campaigns would reduce EIRs at all four sites by 30-to 50-fold. Even without the vaccine, 15-to 25-fold reductions of EIR were predicted, implying that integrated control with a few modestly effective tools can meaningfully reduce malaria transmission in a range of endemic settings. The model accurately predicts the effects of bed nets and indoor spraying and demonstrates that they are the most effective tools available for reducing EIR. However, the impact of domestic adult vector control is amplified by measures for reducing the rate of emergence of vectors or the level of infectiousness of the human reservoir. We conclude that available tools, including currently neglected methods for larval control, can reduce malaria transmission intensity enough to alleviate mortality. Integrated control programs should be implemented to the fullest extent possible, even in areas of intense transmission, using simple models as decision-making tools. However, we also conclude that to eliminate malaria in many areas of intense transmission is beyond the scope of methods which developing nations can currently afford. New, cost-effective, practical tools are needed if malaria is ever to be eliminated from highly endemic areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.