Iran is a country with a variety of different climates. Determining the threshold temperatures suitable for providing thermal and climatic comfort is necessary and vital to its population well-being. This research presents new threshold temperatures in order to calculate the degree day index required for heating and cooling by taking advantage of the 12 stations that are representative of the diversity of Iran's climate. Using Olgyay diagram, different bioclimatic ranges of 12 weather stations and their frequencies were compiled, processes and analysed. Mean daily data of temperature and relative humidity were used for the period of 1950e2010. Based on the frequencies of temperature readings falling in Olgyay's diagram comfort zone, representive temperature thresholds were selected based on 40 to 60 percentiles or (P20), 25e75% percentile (P50) and the threshold of 10e90% percentile. The findings of this study shows that Mashhad with 29.6% and Anzali with 2.33% of frequencies, have experienced the maximum and minimum days of comfort. After analyzing various percentiles to determine the threshold temperatures, it was observed that there is a little difference among the stations for determining the minimum threshold for the comfort. Differences are more obvious in the maximum thresholds. In total, minimum base temperatures (HDD) belonged to Ardabil stations that were 20.50, 20.90 and 20 deg C for P20, P50 and P80 respectively. The maximum temperature for calculating CDD with values of (P20 ¼ 25 C; P50 ¼ 26.25 C; P80 ¼ 27.50 C) is dedicated to Zabol station. The findings present more reasonable thermal comfort thresholds that can be used by architects, engineers and policy makers to achieve, in turn, more energy efficient homes and high quality indoor and outdoor living environments.
ABSTRACT:In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 ºC and 5.6 ºC. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.
The foremost role of a building is to assure the comfort of its occupants. The thermal comfort of a building depends on the outdoor climate and requires a demand in energy for heating and cooling. In this paper, demand of energy (heating/cooling) in the buildings is discussed in Douala, Cameroon. Daily data of the last 40 years coming from five weather stations of Cameroon have been studied. Some forecasts have been carried out with 14 GCM models, associated to three future climate scenarios B1, A2, and A1B. However, only INCM3 of General Circulation Model (GCM) and A2 scenario was used. Energy demand in buildings is valued by HDD (heating degree day) and CDD (cooling degree day) indices. Obtained results show that the temperature evolves more quickly in dry season than in rainy season in Douala. Climate rise indicates an increasing demand of energy in the buildings for cooling. Global Douala heating shows a definite effect on outdoor comfort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.