Resveratrol (RES) has the ability to ameliorate nonalcoholic fatty liver disease (NAFLD) and the mechanism remains unclear. Hence, using high-fat diet (HFD) obese rat model, we investigated the effect of a low dose of RES (20 mg/kg) on the hepatic sterol regulatory element-binding protein (SREBPs) - lipogenesis pathway, enzymes involved in β-oxidation and activity of pancreatic lipase. Four groups of rats (n = 8) of control (12% of calories as fat) and HFD (40% of calories as fat) were administered orally with either normal saline as a vehicle or RES as a concomitant treatment for 8 weeks on a daily basis. Then, various biochemical, histological, and molecular experiments were carried out. RES prevented the development and progression of NAFLD and significantly improved insulin sensitivity through (1) inhibiting the proteolytic cleavage of SREBPs-1 and SREBPs-2 without affecting their precursor mRNA or protein levels, (2) inhibiting free fatty acid β-oxidation and generation of reactive oxygen species through significant inhibition of CPT-1 and UCP-2, and (3) decreasing activity of pancreatic lipase in vivo and in vitro. In conclusion, our findings are the first in the literature to show new mechanisms of the hepatoprotective effect of RES against HFD induced NAFLD in rats.
In the current study, we aimed to investigate the mechanistic role of DJ-1/PI3K/Akt survival pathway in ischemia/reperfusion (I/R) induced cerebral damage and to investigate if the resveratrol (RES) mediates its ischemic neuroptotection through this pathway. RES administration to Sham rats boosted glutathione level and superoxide dismutase activity and downregulated inducible nitric oxide synthase expression without affecting redox levels of DJ-1 forms or components of PI3K/Akt pathway including PTEN, p-Akt or p/p-GSK3b. However, RES pre-administration to I/R rats reduced infarction area, oxidative stress, inflammation and apoptosis. Concomitantly, RES ameliorated the decreased levels of oxidized forms of DJ-1 and enhancing its reduction, increased the nuclear protein expression of Nfr-2 and led to activation of PI3K/Akt survival pathway. In conclusion, overoxidation of DJ-1 is a major factor that contributes to post-I/R cerebral damage and its reduction by RES could explain the neuroprotection offered by RES.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.