We have identified an active Medicago truncatula copia-like retroelement called Medicago RetroElement1-1 (MERE1-1) as an insertion in the symbiotic NSP2 gene. MERE1-1 belongs to a low-copy-number family in the sequenced Medicago genome. These copies are highly related, but only three of them have a complete coding region and polymorphism exists between the long terminal repeats of these different copies. This retroelement family is present in all M. truncatula ecotypes tested but also in other legume species like Lotus japonicus. It is active only during tissue culture in both R108 and Jemalong Medicago accessions and inserts preferentially in genes.
Bioregulators have a great effect on vital processes of plant growth and development. Known plant bioregulators include Naphthalene acetic acid (NAA), Indole-3-butyric acid (IBA) and Indole-3-acetic acid (IAA). Natural or synthetic plant bioregulators are organic compounds that affect the physiological processes in the plant, either to control some of these processes or to modify them. For example these bioregulators can affect the nature of the process, either by accelerating or decelerating plant growth, rates of maturation and also by altering the behavior of the plants or their products. Also, enhancement of important nutrients in human diet could be achieved by bioregulators. This study uses the model crop plant Tomato (Lycopersicon esculentum). Tomato is affected by a group of bioregulators, this group contains compounds which are powerful antioxidants in vitro. The current study aims to find out the effect of some plant bioregulators (IAA, IBA and NAA) on tomato growth, total protein content and enzyme activities of ascorbate peroxidase (APX), superoxide dismutase (SOD) and catalase (CAT). This study also investigates the effect of the above mentioned bioregulators on the level of RNA expression for SOD, CAT and TPX1 genes. The analytical quantification of target gene expression showed the induced effect of NAA on SOD expression and reducing effect of the other bioregulators (IAA and IBA) on CAT and TPX1 expression. However, at the protein level, we foundthat IBA and IAA caused a minor effect on total protein content while a significant effect was recorded on the total protein level using NAA. Upon measuring the enzyme activity of ascorbate peroxidase and catalase, we found that both the exogenous NAA and IBA stimulated ascorbate peroxidase activity in tomato while there was no considerable difference detected in IAA treated plants. Also, there was no considerable difference detected in catalase activity of all bioregulator-treated plants compared with the control.
Low transformation efficiency and long generation time for production of transgenic Gerbera jemosonii plants leads to vulnerable gene function studies. Thus, transient expression of genes would be an efficient alternative. In this investigation, a transient expression system for gerbera petals based on the Agrobacterium infiltration protocol was developed using the reporter genes β-glucuronidase (gus) and green florescence protein (gfp). Results revealed the incapability of using the gfp gene as a reporter gene for transient expression study in gerbera flowers due to the detection of green fluorescent color in the non-infiltrated gerbera flower petals. However, the gus reporter gene was successfully utilized for optimizing and obtaining the suitable agroinfiltration system in gerbera flowers. The expression of GUS was detectable after three days of agroinfiltration in gerbera cultivars "Express" and "White Grizzly" with dark pink and white flower colors, respectively. The vacuum agroinfiltration protocol has been applied on the cultivar "Express" for evaluating the transient expression of the two genes involved in the anthocyanin pathway (iris-dfr and petunia-f3' 5'h), which is responsible for the color in flowers. In comparison to the control, transient expression results showed change in the anthocyanin pigment in all infiltrated flowers with color genes. Additionally, blue color was detected in the stigma and pollen grains in the infiltrated flowers. Moreover, blue colors with variant intensities were observed in produced calli during the routine work of stable transformation with f3' 5'h gene.
ABSTRACT. Plant molecular farming (PMF) is an important growing prospective approach in plant biotechnology; it includes production of recombinant pharmaceutical and industrial proteins in large quantities from engineered plants. Elastin is a major protein component of tissues that require elasticity, it helps keep skin smooth as it stretches to allow normal. Elastin is used as a raw material for the cosmetic industry. In this work, we aimed to use plant as a bioreactor for the expression and production of the full human tropoelastin protein. Agrobacterium-mediated transient expression system into Nicotiana tabacum using syringe agroinfiltration was used to provide fast and convenient way to produce recombinant proteins with greater expression overall the plant leaf. This study aimed to establish an efficient and rapid system for transiently expression and production of human recombinant tropoelastin protein in transgenic N. tabacum plants. Modified elastin (ELN) gene was biosynthesized and cloned into pCambia1390 vector to be used into N. tabacum agroinfilteration. Optimization of codon usage for the human tropoelastin gene, without changing the primary structure of the protein was carried out to ensure high expression in tobacco plants. The obtained data proved that the 5 th day post-infiltration is the optimum interval to obtain the maximum production of our recombinant protein. Southern blot analysis was able to detect 2175 bp fragment length representing the ELN orf (open reding frame). On the other hand, ELN -expression within plant's tissue was visualized by RT-PCR during the period 3-10 days post agroinfiltration. At the protein level, western and ELISA confirmed the expression of recombinant tropoelastin protein. Western blot analysis detected the tropoelastin protein as parent band at »70 kDa from freshly extracted protein, while two degraded bands of »55 and »45 kDa, representing a pattern of tropoelastin were appeared with frozen samples. This study showed that biosynthetic ELN gene was successfully expressed into N. tabacum leaves using agroinfiltration technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.