ObjectiveTo elucidate the molecular cause in a well-characterized cohort of patients with Congenital Hypothyroidism (CH) and Dyshormonogenesis (DH) by using targeted next-generation sequencing (TNGS).Study designWe studied 19 well-characterized patients diagnosed with CH and DH by targeted NGS including genes involved in thyroid hormone production. The pathogenicity of novel mutations was assessed based on in silico prediction tool results, functional studies when possible, variant location in important protein domains, and a review of the recent literature.ResultsTNGS with variant prioritization and detailed assessment identified likely disease-causing mutations in 10 patients (53%). Monogenic defects most often involved TG, followed by DUOXA2, DUOX2, and NIS and were usually homozygous or compound heterozygous. Our review shows the importance of the detailed phenotypic description of patients and accurate analysis of variants to provide a molecular diagnosis.ConclusionsIn a clinically well-characterized cohort, TNGS had a diagnostic yield of 53%, in accordance with previous studies using a similar strategy. TG mutations were the most common genetic defect. TNGS identified gene mutations causing DH, thereby providing a rapid and cost-effective genetic diagnosis in patients with CH due to DH.
Background: Among patients with congenital hypothyroidism, 35% have dyshormonogenesis (DH) with thyroid gland in situ with or without goiter. The majority of DH cases are due to mutations in genes involved in thyroid hormone production as TG, TPO, SLC5A5/NIS, SLC26A4/PDS, IYD/DEHAL1, DUOX2, and DUOXA2, and are usually inherited on an autosomal recessive basis. Most previously reported cases of fetal hypothyroidism and goiter were related to TG or TPO mutations and recently DUOXA2. Patient: In a male patient with antenatal goiter treated with intraamniotic levothyroxine injections, whose long-term follow-up is described in detail, two novel NIS mutations were detected. Mutations of NIS were located in exon 1 (c.52G>A, p.G18R) and exon 13 (c.1546C>T, p.R516X), each mutation was inherited from parents, who are healthy carriers. The p.G18R mutation affecting the first transmembrane domain of the protein can be responsible for deficient iodide uptake. However, the second is a nonsense mutation leading probably to mRNA degradation. In addition, the patient has undergone a thyroidectomy and we have studied the thyroid tissue. The thyroid histology showed heterogeneity with large follicles, epithelial hyperplasia and many areas of fibrosis. Immunohistochemistry with NIS specific antibody showed NIS staining at the basolateral plasma membrane of the thyrocytes. Conclusions: We report the first case of fetal goitrous hypothyroidism due to two novel NIS mutations with access to thyroid tissue of the patient, specific histology studies and long-term follow-up. This case expands our knowledge and provides further insights on molecular causes of fetal goiter in humans.
<b><i>Introduction:</i></b> Overgrowth syndromes are a heterogeneous group of genetic disorders characterized by excessive growth, often accompanied by additional clinical features, such as facial dysmorphism, hormonal imbalances, cognitive impairment, and increased risk for neoplasia. Moreno-Nishimura-Schmidt (M-N-S) overgrowth syndrome is a very rare overgrowth syndrome characterized by severe pre- and postnatal overgrowth, dysmorphic facial features, kyphoscoliosis, large hands and feet, inguinal hernia, and distinctive skeletal features. The clinical and radiological features of the disorder have been well delineated, yet its molecular pathogenesis remains unclear. <b><i>Case Presentation:</i></b> We report on a Lebanese boy with M-N-S syndrome, whose clinical manifestations were compared with those of previously reported 5 affected individuals. Whole-exome sequencing combined with comparative genome hybridization analysis failed to delineate the molecular basis of the phenotype. However, epigenetic studies revealed a different methylation status of several CpG sites between him and healthy controls, with methyltransferase activity showing the most significant enrichment. <b><i>Conclusion:</i></b> An additional case of M-N-S syndrome recapitulated the clinical and radiological manifestations described in the previous reports. The data in the epigenetic studies implicated that abnormal methylations might play an essential role in development of the disease phenotype. However, additional studies in a clinically homogeneous cohort of patients are crucial to confirm this hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.