Gamma-ray shielding properties of eight different metallic glasses based on CuxZr100-x: x = 35 (Cu35Zr65) − 70 (Cu70Zr30) were determined using Monte Carlo simulations and Phy-X/PSD software. A typical gamma-ray transmission setup has been modeled in MCNPX Monte Carlo code. The general trend of the linear attenuation coefficients (μ) was reported as (μ)Cu35Zr65 < (μ)Cu40Zr60 < (μ)Cu45Zr55 < (μ)Cu50Zr50 < (μ)Cu55Zr45 < (μ)Cu60Zr40 < (μ)Cu65Zr35 < (μ)Cu70Zr30. In terms of half value layer (HVL) values, the Cu35Zr65 sample has the highest value (2.984 cm) and the Cu70Zr30 sample has the lowest value (2.769 cm) at 8 MeV photon energy. The mean free path (MFP) values were 4.305 and 3.995 cm for Cu35Zr65 and Cu70Zr30 samples, respectively. Generally, MFP and HVL values of the studied glasses were reported as (MFP,HVL)Cu35Zr65 > (MFP,HVL)Cu40Zr60 > (MFP,HVL)Cu45Zr55 > (MFP,HVL)Cu50Zr50 > (MFP,HVL)Cu55Zr45 > (MFP,HVL)Cu60Zr40 > (MFP,HVL)Cu65Zr35 > (MFP,HVL)Cu70Zr30 for all photon energy range. The Cu70Zr30 sample showed maximum values of both the effective conductivity (C
eff) and effective electron density (N
eff). In addition, the Cu70Zr30 sample has minimum exposure and energy absorption buildup factor (EBF and EABF) values at all studied gamma-ray energies. The results revealed that the Cu70Zr30 sample has superior attenuation properties among all studied samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.