We address the pricing of American straddle options. We use partial Laplace transform techniques due to Evans et al. (1950) to derive a pair of integral equations giving the locations of the optimal exercise boundaries for an American straddle option with a constant dividend yield.
Abstract. American call options are financial derivatives that give the holder the right but not the obligation to buy an underlying security at a pre-determined price. They differ from European options in that they may be exercised at any time prior to their expiration, rather than only at expiration. Their value is described by the Black-Scholes PDE together with a constraint that arises from the possibility of early exercise. This leads to a free boundary problem for the optimal exercise boundary, which determines whether or not it is beneficial for the holder to exercise the option prior to expiration. However, an exact solution cannot be found, and therefore by using asymptotic techniques employed in the study of boundary layers in fluid mechanics, we find an asymptotic expression for the location of the optimal exercise boundary and the value of the option near to expiration.2000 Mathematics Subject Classification. 91B28, 41A58.
Laplace transform methods are used to study the valuation of American call and put options with constant dividend yield, and to derive integral equations giving the location of the optimal exercise boundary. In each case studied, the main result of this paper is a nonlinear Fredholm-type integral equation for the location of the free boundary. The equations differ depending on whether the dividend yield is less than or exceeds the risk-free rate. These integral equations contain a transform variable, so the solution of the equations would involve finding the free boundary that satisfies the equations for all values of this transform variable. Expressions are also given for the transform of the value of the option in terms of this free boundary.Laplace Transforms, American Options, Optimal Exercise Boundary, Dividend Yield, Fredholm-TYPE Integral Equation,
We address the pricing of American straddle options. We use a technique due to Kim (1990) to derive an expression involving integrals for the price of such an option close to expiry. We then evaluate this expression on the dual optimal exercise boundaries to obtain a set of integral equations for the location of these exercise boundaries, and solve these equations close to expiry.
An installment option is a derivative financial security where the price is paid in installments instead of as a lump sum at the time of purchase. The valuation of these options involves a free boundary problem in that at each installment date, the holder of the derivative has the option of continuing to pay the premiums or allowing the contract to lapse, and the decision will depend upon whether the present value of the expected pay-off is greater or less than the present value of the remaining premiums. Using a model installment option where the premiums are paid continuously rather than on discrete dates, an integral equation is derived for the position of this free boundary by applying a partial Laplace transform to the underlying partial differential equation for the value of the security. Asymptotic analysis of this integral equation allows us to deduce the behavior of the free boundary close to expiry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.