Fibers, metal and resin were made up together using mold and compression method. Hand layup was used and Taguchi method for obtaining the optimum parameter. The workpiece with most significant parameters is FG-Al with polyester resin. The best Ra after milling is for FG-Al, CF-Al with polyester resin.Recently, composite materials were widely used in different applications due to their lightweight, and good thermal and mechanical properties. In this study, an attempt to manufacture laminate composites by hand layup was performed. Also, optimal parameters for the best surface roughness were investigated. Therefore, three parameters had been examined; spindle speed, feed rate, and depth of cut. The L9 Taguchi orthogonal array, signal to noise (S/N) ratio, and analysis of variance (ANOVA) were selected to determine the optimum parameters. To create composites, the compression method was employed. Four different types of composites were manufactured with 2.8 mm thickness, to determine the effect of the parameters on the surface roughness and for specified parameters using the CNC milling machine. The weight fraction ratio of fibers was 39%, the polymer was 34%, and 27% for Aluminum. The results showed that the optimum parameters for surface roughness in milling machine of composites for Polyester resin for aluminum-fiberglass composite are; spindle speed=5000 r.p.m, feed rate=1600 mm/min, depth of cut=1.6 mm and Ra=1.853 μm, and for epoxy resin; aluminum-carbon fiber composite is spindle speed=4000 r.p.m, feed rate=800 mm/min, depth of cut=1.2 mm and Ra=2.43 μm.
In this paper the ability of fabricating laminate composites by manual layup was discussed. Heating method was used to manufacture the composites; heat was applied to approximately 12 hours with specific heat temperature. There were four types of laminate composites fabricated and studied in this research, containing Aluminum alloy 6061 as the common element in all types, two types of fibers; woven Carbon fiber with two different orientations: ±45°, ±60°, random fiberglass and with two types of resin; epoxy resin and polyester resin. Different types of composites were made to determine the effect of CNC milling machine to the measured surface roughness and for specified parameters. The weight fraction ratio of the fibers is 37%, polymer is 34% and 29% for Aluminum. The parameters selected are spindle speed, feed rate and depth of cut. The L9 Taguchi orthogonal arrays, signal to noise (S/N) ratio and analysis of variance (ANOVA) are selected to determine the effect of these parameters; it was analyzed by MINITAB 17 program. The results showed that the parameter were significant more to the epoxy resin specimens than polyester resin specimens. The optimal milling parameters for good surface finish for Aluminum – Carbon fiber composite are at 3000RPM, 1200mm/min, 1.2mm, and for Aluminum – Fiberglass composite are 5000RPM, 1800 mm/min, 2.0mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.