Neodymium-iron-boron magnetic oxide powders synthesized by sol–gel Pechini method were studied by using X-ray photoelectron spectroscopy (XPS) and quantum chemical modeling. The powder structure was examined by using X-ray diffraction (XRD) and modeled by using density functional theory (DFT) approximation. The electronic structures of the core and valent regions were determined experimentally by using X-ray photoelectron spectroscopy and modeled by using quantum chemical methods. This study provides important insights into the electronic structure and chemical bonding of atoms of NdFeCoB oxide particles with the partial substitution of Fe by Co atoms.
Nanoparticles of Nd(Fe1-xCox)B with Co concentrations ranging from x = 0 to 0.5 were prepared using a modified Pechini-type sol-gel method. We have shown the influence of Co on the morphology and size of nanoparticles, as well as on elements distribution in nanostructures. It was found that nanoparticles with increased content of Fe and Co were formed during the synthesis process. There was an interdiffusion of Nd and Fe, both after oxidation and after reduction. This study helped to define promising “bottom-up” approaches for the fabrication of nanomaterials for the advanced Nd(Fe1-xCox)B permanent magnets by chemical synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.