The heat shock protein (Hsps) superfamily, also known as molecular chaperones, are highly conserved and present in all living organisms and play vital roles in protein fate. The HspA1A (Hsp70‐1), called Hsp70 in this review, is expressed at low or undetectable levels in most unstressed normal cells, but numerous studies have shown that diverse types of tumor cells express Hsp70 at the plasma membrane that leads to resistance to programmed cell death and tumor progression. Hsp70 is released into the extracellular milieu in three forms including free soluble, complexed with cancer antigenic peptides, and exosome forms. Therefore, it seems to be a promising therapeutic target in human malignancies. However, a great number of studies have indicated that both intracellular and extracellular Hsp70 have a dual function. A line of evidence presented that intracellular Hsp70 has a cytoprotective function via suppression of apoptosis and lysosomal cell death (LCD) as well as that extracellular Hsp70 can promote tumorigenesis and angiogenesis. Other evidence showed intracellular Hsp70 can promote apoptosis and membrane‐associated/extracellular Hsp70 can elicit antitumor innate and adaptive immune responses. Given the contradictory functions, as a "double agent," could Hsp70 be a promising tool in the future of targeted cancer therapies? To answer this question, in this review, we will discuss the functions of Hsp70 in cancers besides inhibition and stimulation strategies for targeting Hsp70 along with their challenges.
Coronavirus disease 2019 or COVID-19, starting from Wuhan, China, in December 2019, is a pandemic situation affecting millions worldwide and has exerted a huge burden on healthcare infrastructure. Therefore, there is an urgent need to understand the molecular mechanisms underlying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and design novel effective therapeutic strategies for combating this pandemic. In this regard, special attention has been paid to the exosomes. These nanoparticles are extracellular vesicles with critical function in the pathogenesis of several diseases including viral sepsis. Therefore, they may be involved in the pathogenesis of COVID-19 infection and also may be a way for transferring viral components and infecting other neighbor cells. Exosomes also can be considered as a therapeutic strategy for treating COVID-19 patients or used as a carrier for delivering effective therapeutic agents. Therefore, in this review, we discussed the biogenesis and contents of exosomes, their function in viral infection, and their potential as a therapeutic candidate in treating COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.